Skip to main content

An Overview on Acoustic Metamaterials

  • Conference paper
  • First Online:
Proceedings of I4SDG Workshop 2021 (I4SDG 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 108))

Included in the following conference series:

  • 1257 Accesses

Abstract

Acoustic metamaterials are artificially engineered composites composed of mesoscopic subwavelength units, which have recently become an active field with an enormous range of potential applications. These media, which derive their properties from their structure rather than from the chemical properties of their constitutive materials, can be tailored in such a fashion to exhibit arbitrary effective constitutive parameters, ranging from very large positive to negative values. Initially proposed to achieve super absorption, acoustic metamaterials are today investigated to obtain numerous extraordinary effects, which include compact wavefront modulation, cloaking, asymmetric transmission, sub-diffraction focusing, etc. In this article, we review some of the most relevant works in this field and analyse the basic phenomena governing the behaviour of different kinds of acoustic metamaterials. We conclude with an outlook on active acoustic metamaterials, in which inclusions can provide energy to the impinging wave to obtain effective material properties that are not possible in passive structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi 10, 509–514 (1968)

    Article  Google Scholar 

  2. Liu, Z., et al.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Article  Google Scholar 

  3. Liu, Z., Chan, C.T., Sheng, P.: Analytic model of phononic crystals with local resonances. Phys. Rev. B 71, 014103 (2005)

    Google Scholar 

  4. Sheng, P., Zhang, X.X., Liu, Z., Chan, C.T.: Locally resonant sonic materials. Phys. B 338, 201–205 (2003)

    Article  Google Scholar 

  5. Mei, J., Liu, Z., Wen, W., Sheng, P.: Effective mass density of fluid-solid composites. Phys. Rev. Lett. 96, 24301 (2006)

    Article  Google Scholar 

  6. Alu, A., Silveirinha, M.G., Salandrino, A., Engheta, N.: Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75(15), 155410 (2007).

    Google Scholar 

  7. Wu, Y., Li, J.: Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects, Appl. Phys. Lett. 102(18), 183105(2013)

    Google Scholar 

  8. Ding, Y., Liu, Z., Qiu, C., Shi, J.: Metamaterial with simultaneously negative bulk modulus and mass density. Phys. Rev. Lett. 99(9), 093904 (2007)

    Google Scholar 

  9. Fok, L., Zhang, X.: Negative acoustic index metamaterial. Phys. Rev. B 83(21), 214304 (2011)

    Google Scholar 

  10. Cheng, Y., Xu, J.Y, Liu, X.J.: One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus, Phys. Rev. B 77, 045134 (2008)

    Google Scholar 

  11. Bongard, F., Lissek, H., Mosig, J.R.: Acoustic transmission line metamaterial with negative/zero/positive refractive index, Phys. Rev. B 82(9), 094306 (2010)

    Google Scholar 

  12. Li, J., Chan, C.T.: Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004)

    Article  Google Scholar 

  13. Gusev, V.E., Wright, O.B.: Double-negative flexural acoustic metamaterial, New J. Phys. 16(12), 123053 (2014)

    Google Scholar 

  14. Fang, N., et al.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006)

    Google Scholar 

  15. Claeys, C.C., Pluymer, B., Sas, P., Desmet, W.: Design of a resonant metamaterial based acoustic enclosure. Proc. ISMA 2014, 3351–3358 (2014)

    Google Scholar 

  16. Tang, Y., et al.: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound. Sci. Rep. 7, 43340 (2017)

    Google Scholar 

  17. Lewińska, M.A., Van Dommelen, J.A.W., Kouznetsova, V.G., Geers, M.G.D.: Towards acousticmetafoams: the enhanced performance of a poroelastic material with local resonators. J. Mech. Phys. Solids 124, 189–205 (2019)

    Article  MathSciNet  Google Scholar 

  18. Holloway, C.L., Kuester, E.F., Gordon, J.A., O’Hara, J., Booth, J., Smith, D.R.: An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 54(2), 10–35 (2012)

    Article  Google Scholar 

  19. Yong, L., Xue, J., Bin, L., Cheng, J.C., Zhang, L.: Metascreen-based acoustic passive phased array. Phys. Rev. Appl. 4, 024003 (2015)

    Google Scholar 

  20. Jiang, X., Liang, B., Zou, X.Y., Yin, L.L., Yang, J.: Acoustic one-way metasurfaces: asymmetric phase modulation of sound by subwavelength layer. Sci. Rep. 6, 28023 (2016)

    Article  Google Scholar 

  21. Ma, G., Yang, M., Xiao, S., Yang, Z., Sheng, P.: Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014)

    Article  Google Scholar 

  22. Liang, Z., Li, J.: Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108, 114301 (2016)

    Google Scholar 

  23. Xie, Y., Popa, B.‑I., Zigoneanu, L., Cummer, S.A.: Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110, 175501 (2013)

    Google Scholar 

  24. Liang, Z., et al.: Space-coiling metamaterials with double negativity and conical dispersion. Sci. Rep. 3, 1614 (2013)

    Google Scholar 

  25. Zhu, Y.F., Zou, X.Y., Liang, B., Cheng, J.C.: Acoustic one-way open tunnel by using metasurface. Appl. Phys. Lett. 107, 113501 (2015)

    Google Scholar 

  26. Zhu, Y.F., et al.: Dispersionless manipulation of reflected acoustic wavefront by subwavelength corrugated surface. Sci. Rep. 5, 10966 (2015)

    Article  Google Scholar 

  27. Jia, X., Yan, M., Hong, M.: Sound energy enhancement via impedance-matched anisotropic metamaterial. Mater. Des. 197, 109204 (2021)

    Google Scholar 

  28. Xie, Y., Konneker, A., Popa, B-I., Cummer, S.A.: Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Appl. Phys. Lett. 103(20), 201906 (2013)

    Google Scholar 

  29. Bergamini, A., Delpero, T., De Simoni, L., Di Lillo, L., Ruzzene, M., Ermanni, P.: Phononic crystal with adaptive connectivity. Adv. Mater. 26, 1343–1347 (2014)

    Article  Google Scholar 

  30. Popa, B.I., Zigoneanu, L., Cummer, S.A.: Tunable active acoustic metamaterials. Phys. Rev. B 88, 024303 (2013)

    Google Scholar 

  31. Popa, B.I., Shinde, D., Konneker, A., Cummer, S.A.: Active acoustic metamaterials reconfigurable in real-time. Phys. Rev. B 91, 220303(R) (2015)

    Article  Google Scholar 

  32. Akl, W., Baz, A.: Experimental characterization of active acoustic metamaterial cell with controllable dynamic density. J. Appl. Phys. 112, 084912 (2012)

    Google Scholar 

  33. Xiao, S., Ma, G., Li, Y., Yang, Z., Sheng, P.: Active control of membrane-type acoustic metamaterial by electric field. Appl. Phys. Lett. 106, 091904 (2015)

    Google Scholar 

  34. Lee, K.J.B., Jung, M.K., Lee, S.H.: Highly tunable acoustic metamaterials based on a resonant tubular array. Phys. Rev. B Condens. Matter 86, 184302 (2012)

    Google Scholar 

  35. Fleury, R., Sounas, D., AlĂą, A.: An invisible acoustic sensor based on parity-time symmetry. Nat. Commun. 6, 5905 (2015)

    Google Scholar 

Download references

Acknowledgements

The publication was written at Virtual Vehicle Research GmbH in Graz, Austria. The authors would like to acknowledge the financial support within the COMET K2 Competence Centers for Excellent Technologies from the Austrian Federal Ministry for Climate Action (BMK), the Austrian Federal Ministry for Digital and Economic Affairs (BMDW), the Province of Styria (Dept. 12) and the Styrian Business Promotion Agency (SFG). The Austrian Research Promotion Agency (FFG) has been authorised for the programme management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Bova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bova, W., Nijman, E., Mundo, D. (2022). An Overview on Acoustic Metamaterials. In: Quaglia, G., Gasparetto, A., Petuya, V., Carbone, G. (eds) Proceedings of I4SDG Workshop 2021. I4SDG 2021. Mechanisms and Machine Science, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-87383-7_58

Download citation

Publish with us

Policies and ethics