Skip to main content
Log in

Impact of TiO2 buffer layer on the ferroelectric photovoltaic response of CSD grown PZT thick films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Chemical solution deposition technique has been utilized to grow polycrystalline PZT thick films on Pt/Ti/SiO2/Si and TiO2-buffered Pt/Ti/SiO2/Si substrates. Effect of thin TiO2 buffer layer on the structural, dielectric and electrical properties of PZT films has been investigated in the present work. Polycrystalline single-phase PZT thick film is achieved using the buffer layer of TiO2. The disappearance of cracks in PZT films deposited on TiO2/Pt/Ti/SiO2/Si substrate indicates the role of the buffer layer as a diffusion barrier for platinum into PZT. The dielectric constant of the PZT film is found to be increased from 104 to 403, while the dielectric loss is reduced from 0.19 to 0.06 at 1MHz using the buffer layer of TiO2. Reduction in the leakage current density from 4.45×10−5 to 2.42×10−10 A/cm2 is obtained for the titanium dioxide buffer layered PZT film. The saturation polarization (Ps = 45 μC/cm2) is achieved for the optimized TiO2-buffered PZT thick film. Optimized PZT film shows well-defined butterfly loop revealing its ferroelectric nature. Free carrier concentration of the optimized film is determined from the Mott Schottky analysis and found to be 4.28×1019 cm−3. The ferroelectric photovoltaic device is fabricated using the optimized PZT thick film, and photovoltaic measurements are done under UV illumination with variation in UV intensity from 2 to 24 mW/cm2. Short circuit current (Isc) increased from 1.42 × 10−9 to 0.63 × 10−7 A with increase in the UV intensity from 2 to 24 mW/cm2. However, open circuit voltage (−1.7V) is observed to remain constant with increase in the UV intensity 2 mW/cm2 to 24 mW/cm2, respectively. The power conversion efficiency is found to be increased from 0.15 to 0.58% with increase in the UV intensity from 2 to 24 mW/cm2. The transient photocurrent is increased from 1.80 × 10−9 to 1.57×10−7 A with increase in the UV intensity from 2 to 24 mW/cm2 at fixed DC bias voltage (5V) for the fabricated photovoltaic device. Response of the optimized fabricated photovoltaic cell to the incident UV light of different intensities is fast with excellent stability. A significant enhancement in the photocurrent from 1.68×10−7 to 4.98×10−7 A is found with heating along with UV illumination (intensity =24 mW/cm2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig. 7
Fig 8
Fig. 9
Fig. 10

Similar content being viewed by others

6. References

  1. S. Jang, L. Ching, K. Kuo, Fabrication and characterization of PZT thick films for sensing and actuation. Sensors 7, 493–507 (2007)

    Article  ADS  Google Scholar 

  2. C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhanc, R. Vaish, Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7, 3836–3856 (2014)

    Article  Google Scholar 

  3. G. Yi, Z. Wu, M. Sayer, Preparation of Pb(Zr, Ti)O3 thin films by sol gel processing: electrical, optical, and electro-optic properties. J. Appl. Phys. 64, 2717–2724 (1988)

    Article  ADS  Google Scholar 

  4. R.A. Dorey, R.W. Whatmore, Pyroelectric properties of PZT/PMNZTU composite thick films. J. Electroceram. 25, 2379 (2005)

    Google Scholar 

  5. L.L. Sun, O.K. Tan, G. Liu, G. Zhu, X. Yao, Poling of multilayer Pb(Zr0:3Ti0:7)O3/PbTiO3 thin film for pyroelectric infrared sensor application. Infrared Phys. Technol. 44, 177–182 (2003)

    Article  ADS  Google Scholar 

  6. L.S. Jang, K.C. Kuo, Fabrication and characterization of PZT thick films for sensing and actuation. Sensors 7, 493–507 (2007)

    Article  ADS  Google Scholar 

  7. R. Gupta, V. Gupta, M. Tomar, Ferroelectric PZT thin films for photovoltaic application. Mater. Sci. Semicond. Process. 105, 104723 (2020)

    Article  Google Scholar 

  8. Y. Yuan, Z. Xiao, B. Yang, J. Huang, Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2, 6027–6041 (2014)

    Article  Google Scholar 

  9. F. Huang, C. Hu, Z. Xian, X. Sun, Z. Zhou, X. Meng, P. Tan, Y. Zhang, X. Huang, Y. Wang, H. Tian, Photovoltaic properties in an orthorhombic Fe doped KTN single crystal. Opt. Express 28, 34754 (2020)

    Article  ADS  Google Scholar 

  10. J. Zhang, X. Su, M. Shen, Z. Dai, L. Zhang, X. He, W. Cheng, M. Cao, G. Zou, Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects. Sci. Rep. 3, 2109 (2013)

    Article  ADS  Google Scholar 

  11. Y. Zhang, M. Xie, J. Roscow, Y. Bao, K. Zhou, D. Zhang, R. Bowen, Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications. J. Mater. Chem. A 5, 6569–6580 (2017)

    Article  Google Scholar 

  12. J. Zhang, Dielectric, ferroelectric and piezoelectric properties of PZT ceramics by ZnO doping. Integr. Ferroelectr. 199, 105–111 (2019)

    Article  Google Scholar 

  13. W.C. Shih, Z.Z. Yen, Y.S. Liang, Preparation of highly C-axis-oriented PZT films on Si substrate with MgO buffer layer by the sol–gel method. J. Phys. Chem. Sol. 69, 593–596 (2008)

    Article  ADS  Google Scholar 

  14. N. Parikh, J. Todd, M. Swanson, E. Myers, Study of diffusion barriers for PZT deposited on Si FOR non-volatile random-access memory technology. MRS Online Procedings Library (OPL), Symposium Y – Ferroelectric Thin Films I193, (1990)

  15. H. Bruncková, L. Medvecký, Effect of sol concentration and substrate type on microstructure formation of PZT thin films. Ceram. Silik. 55, 36–42 (2011)

    Google Scholar 

  16. K. Elibol, M.D. Nguyen, R.J.E. Hueting, D.J. Gravesteijn, G. Koster, G. Rijnders, Integration of epitaxial Pb(Zr0.52Ti0.48)O3 films on GaN/AlGaN/GaN/ Si(111) substrates using rutile TiO2 buffer layers. Thin Sol. Films 591, 66–71 (2015)

    Article  ADS  Google Scholar 

  17. M. Zhao, R. Fud, L. Zhang, Act. Mater. 50, 4241–4254 (2002)

    Article  ADS  Google Scholar 

  18. H. Neung, G. ChoHo, PT(PbTiO3) buffer layer effects on the electrical properties of Pb(Zr, Ti)O3 thin films. Microelectron. Eng. 29, 243–246 (1995)

    Article  Google Scholar 

  19. K. Lee, B. Roh Rhee, C. Lee, Improvement of the electrical properties of PZT thin films using TiO2 buffer layer. Integr. Ferroelectr. 39, 143–150 (2001)

    Article  Google Scholar 

  20. Q.X. Peng, C.G. Wu, W.B. Luo, L. Jin, W.L. Zhang, C. Chen, X.Y. Sun, The improvement of pyroelectric properties of PZT thick films on Si substrate by TiOx barrier layer. Infrared Phys. Technol. 58, 51–55 (2013)

    Article  ADS  Google Scholar 

  21. P.H. Ansari, A. Safari, PZT thin films on a lead titanate interlayer prepared by rf magnetron sputering. Symposium N – Ferroelectric Thin Films III. pp 310–467, (1993)

  22. A. Bose, M. Sreemany, S. Bysakh, Role of TiO2 seed layer thickness on the nanostructure evolution and phase transformation behavior of sputtered PZT thin films during post-deposition air-annealing. J. Am. Ceram. Soc. 94, 4066 (2011)

    Article  Google Scholar 

  23. X. Liu, Z.G. Liu, J. Yin, J.M. Liu, Microstructure and electrical properties of ferroelectric Pb (Zr0.53Ti0.47) O3 films on Si with TiO2 buffer layers. J. Phys. Condens. Matter 12(43), 9189 (2000)

    Article  ADS  Google Scholar 

  24. C. Zhao, Z. Wang, W. Zhu, X. Yao, W. Liu, PZT thick films fabrication using a sol–gel based 0–3 composite processing. Int. J. Mod. Phys. B 16, 242–248 (2002)

    Article  ADS  Google Scholar 

  25. C. Zhu, Z. Yong, Y. Cheng, Y. Bang, W. Sheng, L. Jin, S. Ming, Lattice Constant α Calculation of PZT Films prepared by a new modified sol–gel Method. J. Electron. Sci. Technol. 3, 168–171 (2005)

    Google Scholar 

  26. L. Chen, M. Shen, L. Fang, Y. Xu, Dielectric properties and IV characteristics of (Pb 0.4 Sr 0.6)TiO 3 thin films improved by TiO2 buffer layers. J. Sol–Gel Sci. Technol. 42, 299–303 (2007)

    Article  Google Scholar 

  27. L. Chen, M. Shen, L. Fang, Y. Xu, Dielectric properties and IV characteristics of (Pb 0.4 Sr 0.6)TiO 3 thin films improved by TiO 2 buffer layers. J. Sol–Gel Sci. Technol. 42, 299–303 (2007)

    Article  Google Scholar 

  28. P. Khaenamkaewa, S. Muensit, I.K. Bdikin, A.L. Kholkin, Effect of Zr/Ti ratio on the microstructure and ferroelectric properties of lead zirconate titanate thin films. Mater. Chem. Phys. 102, 159–164 (2007)

    Article  Google Scholar 

  29. Z. Wu, J. Zhou, W. Chen, J. Shen, H. Yang, S. Zhang, Y. Liu, Improvement in temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films using Ba(Mg1/3Ta2/3)O3 buffer layer. Appl. Surf. Sci. 388, 579–583 (2016)

    Article  ADS  Google Scholar 

  30. X.S. Wang, Y.J. Wang, J. Yin, Z.G. Liu, Enhanced ferroelectric properties of Pb(Zr0:52Ti0:48)O3 film on Pt/TiO2/SiO2/Si(0 0 1) using ZnO buffer layer. Scr. Mater. 46, 783–787 (2002)

    Article  Google Scholar 

  31. D. Chaudhary, S. Singh, V.D. Vankar, N. Khare, ZnO nanoparticles decorated multi-walled carbon nanotubes for enhanced photocatalytic and photoelectrochemical water splitting. J. Photochem. Photobiol. A Chem. 351, 154–161 (2018)

    Article  Google Scholar 

  32. R. Guo, L. You, Y. Zhou, Z. Shiuh Lim, X. Zou, L. Chen, R. Ramesh, J. Wang, Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 4(1), 1–5 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to University of Delhi and DST for technical and financial support. One of the author Vandana acknowledges the research fellowship from CSIR, govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandana, Gupta, R., Tomar, M. et al. Impact of TiO2 buffer layer on the ferroelectric photovoltaic response of CSD grown PZT thick films. Appl. Phys. A 127, 427 (2021). https://doi.org/10.1007/s00339-021-04552-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04552-3

Keywords

Navigation