Skip to main content
Log in

Effects of annealing process and the additive on the electrical properties of chemical solution deposition derived 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 (PMN–PT) thin films were deposited on (111)Pt/Ti/SiO2/Si substrates via the chemical solution deposition. Both of the annealing process and additive methanamide play an obvious part in the structure and electrical properties of PMN–PT films. The optimized high-qualitied PMN–PT thin film in present work is fabricated with the methanamide in the precursor and annealed at 650 °C for 20 min. The film exhibits pure perovskite phase and superior ferroelectricity. The saturation polarization Ps and remanent polarization Pr are 52.1 µC/cm2 and 18.7 µC/cm2 at 500 kV/cm with 1000 Hz. It also shows low leakage current density of approximately 1.0 × 10− 8 A/cm2 at 200 kV/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Lu, J. Zheng, M. Golomb, F. Wang, H. Jiang, J. Zhao, Appl. Phys. Lett. 74, 3764 (1999)

    Article  CAS  Google Scholar 

  2. R. Herdier, M. Detalle, D. Jenkins, C. Soyer, D. Remiens, Sens. Actuators A 148, 122–128 (2008)

    Article  CAS  Google Scholar 

  3. J.C. Frederick, T.H. Kim, W. Maeng, A.A. Brewer, J.P. Podkaminer, W. Saenrang, V. Vaithyanathan, F. Li, L.Q. Chen, D.G. Schlom, S. Trolier-McKinstry, M.S. Rzchowski, C.B. Eom, Appl. Phys. Lett. 108, 132902 (2016)

    Article  Google Scholar 

  4. J.C. Ho, K.S. Liu, I.N. Lin, J. Mater. Sci. 28, 4497–4502 (1993)

    Article  CAS  Google Scholar 

  5. D.G. Zhou, H.J. Sun, X.F. Liu, H.T. Sui, Q.H. Gou, P.D. Liu, Y. Ruan, Ceram. Int. 43, 5901–5906 (2017)

    Article  CAS  Google Scholar 

  6. T.Y. Koo, S.W. Cheong, Appl. Phys. Lett. 80, 4205–4207 (2002)

    Article  CAS  Google Scholar 

  7. H. Luo, G. Xu, H. Xu, P. Wang, Z. Yin, Jpn. J. Appl. Phys. 39, 5581–5581 (2000)

    Article  CAS  Google Scholar 

  8. Y.C. Zhang, Z.Z. Yang, W.N. Ye, C.J. Lu, L.H. Xia, J. Mater. Sci. Mater. Electron. 22, 309–314 (2011)

    Article  CAS  Google Scholar 

  9. S.H. Baek, J. Park, D.M. Kim, V.A. Aksyuk, R.R. Das, S.D. Bu, D.A. Felker, J. Lettieri, V. Vaithyanathan, S.S.N. Bharadwaja, N. Bassiri-Gharb, Y.B. Chen, H.P. Sun, C.M. Folkman, H.W. Jang, D.J. Kreft, S.K. Streiffer, R. Ramesh, X.Q. Pan, S. Trolier-McKinstry, D.G. Schlom, M.S. Rzchowski, R.H. Blick, C.B. Eom, Science 334, 958–961 (2011)

    Article  CAS  Google Scholar 

  10. S. Nagakari, K. Kamigaki, S. Nambu, Jpn. J. Appl. Phys. 35, 4933–4935 (1996)

    Article  CAS  Google Scholar 

  11. T.C. Goel, P. Kumar, A.R. James, C. Prakash, J. Electroceram. 13, 503–507 (2004)

    Article  CAS  Google Scholar 

  12. W. Gong, J.F. Li, X. Chu, L. Li, J. Am. Ceram. Soc. 87, 1031–1034 (2004)

    Article  CAS  Google Scholar 

  13. P. Kumar, Sonia, R.K. Patel, C. Prakash, T.C. Goel, Mater. Chem. Phys. 110, 7–10 (2008)

    Article  CAS  Google Scholar 

  14. J.H. Lee, M.R. Choi, W. Jo, J.Y. Jang, M.Y. Kim, Ultramicroscopy 108, 1106–1109 (2008)

    Article  CAS  Google Scholar 

  15. S.Y. Lee, M.C.C. Custodio, H.J. Lim, R.S. Feigelson, J.P. Maria, S. Trolier-McKinstry, J. Cryst. Growth 226, 247–253 (2001)

    Article  CAS  Google Scholar 

  16. X.L. Wang, L. Zhang, X.H. Hao, S.L. An, Mater. Res. Bull. 65, 73–79 (2015)

    Article  CAS  Google Scholar 

  17. X.Y. Chen, J. Wang, K.H. Wong, C.L. Mak, G.X. Chen, J.M. Liu, M. Wang, Z.G. Liu, Appl. Phys. A 81, 1145–1149 (2005)

    Article  CAS  Google Scholar 

  18. M. Nayak, S.Y. Lee, T.Y. Tseng, Mater. Chem. Phys. 77, 34–42 (2002)

    Article  Google Scholar 

  19. M. Feng, W. Wang, H. Ke, J.C. Rao, Y. Zhou, J. Alloys Compd 495, 154–157 (2010)

    Article  CAS  Google Scholar 

  20. T. Arai, T. Ohno, T. Matsuda, N. Sakamoto, N. Wakiya, H. Suzuki, Thin Solid Films 585, 86–90 (2015)

    Article  CAS  Google Scholar 

  21. Y.C. Zhang, W.N. Ye, Z.Z. Yang, C.J. Lu, L.H. Xia, J. Mater. Sci. Mater. Electron. 22, 91–95 (2011)

    Article  CAS  Google Scholar 

  22. K. Okuwada, M. Imai, K. Kukuno, Jpn. J. Appl. Phys. 29, L1271–L1273 (1989)

    Article  Google Scholar 

  23. Y. Narendar, G.L. Messing, J. Am. Ceram. Soc. 80, 915–924 (1997)

    Article  CAS  Google Scholar 

  24. J.F. Scott, J. Phys. Condens. Matter 20, 021001 (2008)

    Article  Google Scholar 

  25. Y. Ishibashiand, H. Orihara, Integr. Ferroelectr. 9, 57–61 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51572123); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors would thank Professor Y. H. Lin and Dr. J. Ma of Tsinghua University for their helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, B., Wang, J., Pan, H. et al. Effects of annealing process and the additive on the electrical properties of chemical solution deposition derived 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 thin films. J Mater Sci: Mater Electron 29, 16997–17002 (2018). https://doi.org/10.1007/s10854-018-9795-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9795-4

Navigation