Skip to main content
Log in

Nd3+-doped amorphous calcium yttrium silicate ceramic powder for near-infrared thermometry

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Fluorescent materials doped with rare-earth ions have raised great interest because of their prominent use in near-infrared temperature sensing, where their application in biological systems is possible. In this work, the performance of Nd3+-doped calcium yttrium silicate (CYS) ceramic powder phosphor prepared by combustion synthesis method for optical temperature sensing is discussed. The material is amorphous after heat-treatment at 700 °C, and it exhibits intense near-infrared (NIR) fluorescence when the sample is irradiated by a CW laser radiation at λ ~ 532 nm. The characteristic emission peaks of Nd3+ in the NIR region, centered at 811 and 895 nm, were observed corresponding to the 4F5/2 and 4F3/2 multiplets relaxation to the ground state. By inspecting the fluorescence behavior of these NIR emissions as a function of temperature, a noticeable change on the relative intensities corresponding to transitions 4F5/2 → 4I9/2 and 4F3/2 → 4I9/2 in the temperature range of 298–673 K was observed. Through the use of the fluorescence intensity ratio technique, the optical temperature sensing performance was studied assuming a quasi-equilibrium Boltzmann population distribution among the thermally coupled levels 4F5/2 and 4F3/2. A maximum absolute sensitivity Sa of ~ 3.2 × 10−3 K−1 at 795 K and a relative thermal sensitivity Sr of 1.59% K−1 at 298 K were obtained. These results indicate that the Nd3+-doped CYS powder system studied here exhibits a potential use in thermal sensing within the first biological window (700–950 nm).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

source: CW laser (532 nm, 100 mW)

Fig. 5

Similar content being viewed by others

References

  1. D. Jaque, F. Vetrone, Luminescence nanothermometry. Nanoscale 4, 4301–4326 (2012)

    Article  ADS  Google Scholar 

  2. C.D.S. Brites, P.P. Lima, N.J.O. Silva, A. Millán, V.S. Amaral, F. Palacio, L.D. Carlos, Thermometry at the nanoscale. Nanoscale 4, 4799–4829 (2012)

    Article  ADS  Google Scholar 

  3. X.D. Wang, O.S. Wolfbeis, R.J. Meier, Luminescent probes and sensors for temperature. Chem. Soc. Rev. 42, 7834–7869 (2013)

    Article  Google Scholar 

  4. E. Hemmer, P. Acosta-Mora, J. Mendez-Ramos, S. Fischer, Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. J. Mater. Chem. B 5, 4365–4392 (2017)

    Article  Google Scholar 

  5. B. Liu, C.X. Li, P.P. Yang, Z.Y. Hou, J. Lin, 808-nm-Light-excited lanthanide-doped nanoparticles: rational design, luminescence control and theranostic applications. Adv. Mater. 29, 1605434 (2017)

    Article  Google Scholar 

  6. L. Marciniak, A. Bednarkiewicz, D. Kowalska, W. Strek, A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues. J. Mater. Chem. C 4, 5559–5563 (2016)

    Article  Google Scholar 

  7. L. Marciniak, A. Bednarkiewicz, W. Strek, Tuning of the up-conversion emission and sensitivity of luminescent thermometer in LiLaP4O12:Tm, Yb nanocrystals via Eu3+ dopants. J. Lumin. 184, 179–184 (2017)

    Article  Google Scholar 

  8. S.S. Zhou, S. Jiang, X.T. Wei, Y.H. Chen, C.K. Duan, M. Yin, Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4. J. Alloys Compd. 588, 654–657 (2014)

    Article  Google Scholar 

  9. J.S. Zhong, D.Q. Chen, Y.Z. Peng, Y.D. Lu, X. Chen, X.Y. Li, Z.G. Ji, A review on nanostructured glass ceramics for promising application in optical thermometry. J. Alloys Compd. 763, 34–48 (2018)

    Article  Google Scholar 

  10. Li. Che, B. Dong, Ch. Ming, M. Lei, Application to temperature sensor based on green up-conversion of Er3+ doped silicate glass. Sensors 7, 2652–2659 (2007)

    Article  ADS  Google Scholar 

  11. E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D.B. Ostrowsky, G.W. Baxter, Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors. Appl. Opt. 34, 8019–8025 (1995)

    Article  ADS  Google Scholar 

  12. S. Stolik, J.A. Delgado, A. Perez, L. Anasagasti, Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J. Photochem. Photobiol. B 57, 90–93 (2000)

    Article  Google Scholar 

  13. L. Shi, L.A. Sordillo, A. Rodríguez-Contreras, R. Alfano, Transmission in near-infrared optical windows for deep brain imaging. J. Biophoton. 9, 38–43 (2016)

    Article  Google Scholar 

  14. M. Quintanilla, Y. Zhang, L.M. Liz-Marzan, Subtissue plasmonic heating monitored with CaF2:Nd3+, Y3+ nanothermometers in the second biological window. Chem. Mater. 30, 2819–2828 (2018)

    Article  Google Scholar 

  15. L.A.O. Nunes, A.S. Souza, L.D. Carlos, O.L. Malta, Neodymium doped fluoroindogallate glasses as highly-sensitive luminescent non-contact thermometers. Opt. Mater. 63, 42–45 (2017)

    Article  ADS  Google Scholar 

  16. X. Tian, X. Wei, Y. Chen, C. Duan, M. Yin, Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4:Nd3+. Opt. Express 22, 30333–30345 (2014)

    Article  ADS  Google Scholar 

  17. C. Pérez-Rodríguez, L.L. Martín, S.F. León-Luis, I.R. Martín, K.K. Kumar, C.K. Jayasankar, Relevance of radiative transfer processes on Nd3+ doped phosphateglasses for temperature sensing by means of the fluorescence intensity ratio technique. Sens. Actuators B 195, 324–331 (2014)

    Article  Google Scholar 

  18. S. Balabhadra, M.L. Debasu, C.D.S. Brites, L.A.O. Nunes, O.L. Malta, J. Rocha, M. Bettinelli, L.D. Carlos, Boosting the sensitivity of Nd3+-based luminesent nanothermometers. Nanoscale 7, 17261–17267 (2015)

    Article  ADS  Google Scholar 

  19. Y. Kojima, S. Kamei, T. Toyama, N. Nishimiya, Preparation of novel phosphor using intercalation of tobermorite. J. Lumin. 129, 751–754 (2009)

    Article  Google Scholar 

  20. W. Xu, Q.T. Song, L.J. Zheng, Z.Z. Zhang, W.W. Cao, Optical temperature sensing based on the near-infrared emissions from Nd3+/Yb3+ codoped CaWO4. Opt. Lett. 39, 4635–4638 (2014)

    Article  ADS  Google Scholar 

  21. J. McKittrick, L.E. Shea-Rohwer, Down conversion materials for solid-state lighting. J. Am. Ceram. Soc. 97, 1327–1352 (2014)

    Article  Google Scholar 

  22. R.E. Rojas-Hernandez, M.A. Rodriguez, J.F. Fernandez, Role of the oxidizing agent to complete the synthesis of strontium aluminate based phosphors by the combustion method. RSC Adv. 5, 3104–3112 (2015)

    Article  ADS  Google Scholar 

  23. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016)

    Article  Google Scholar 

  24. L.E. Shea, J. McKittrick, O.A. Lopez, E. Sluzky, Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process. J. Am. Ceram. Soc. 79, 3252–3265 (1996)

    Article  Google Scholar 

  25. G.A. Hirata, F. Ramos, R. Garcia, E.J. Bosze, J. McKittrick, F.A. Ponce, A new combustion synthesis method for GaN:Eu3+ and Ga2O3:Eu3+ luminescent powders. Phys. Status Sol. (a) 188, 179–182 (2001)

    Article  ADS  Google Scholar 

  26. G.S. Maciel, N. Rakov, Thermometric analysis of the near-infrared emission of Nd3+ in Y2SiO5 ceramic powder prepared by combustion synthesis. Ceram. Inter. 46, 12165–12171 (2020)

    Article  Google Scholar 

  27. M. Suta, Z. Antic, V. Dordevic, S. Kuzman, M.D. Dramicanin, A. Meijerink, Making Nd3+ a sensitive luminescent thermometer for physiological temperatures - an account of pitfalls in Boltzmann thermometry. Nanomaterials 10, 1–20 (2020)

    Article  Google Scholar 

  28. G.C. Jiang, X.T. Wei, S.S. Zhou, Y.H. Chen, C.K. Duan, M. Yin, Neodymium doped lanthanum oxysulfide as optical temperature sensors. J. Lumin. 152, 156–159 (2014)

    Article  Google Scholar 

  29. I.E. Kolesnikov, A.A. Kalinichev, M.A. Kurochkin, D.V. Mamonova, E.Y. Kolesnikov, E. Lähderanta, M.D. Mikhailov, Bifunctional heater-thermometer Nd3+-doped nanoparticles with multiple temperature sensing parameters. Nanotechnol. 30, 145501 (2019)

    Article  ADS  Google Scholar 

  30. X. Tian, X. Wei, Y. Chen, C. Duan, M. Yin, Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4:Nd3+. Opt. Exp. 22, 30333–30345 (2014)

    Article  ADS  Google Scholar 

  31. T.D. Hatchard, J.R. Dahn, In Situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838 (2004)

    Article  Google Scholar 

  32. A. Dobrowolska, E. Zych, Luminescence of Tb-doped Ca3Y2(Si3O9)2 oxide upon UV and VUV synchrotron radiation excitation. J. Solid State Chem. 184, 1707–1714 (2011)

    Article  ADS  Google Scholar 

  33. P. Huang, X. Wang, X. Liang, J. Yang, C. Zhang, D. Kong, W. Wang, Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomater. 85, 1–26 (2019)

    Article  Google Scholar 

  34. C.D.S. Brites, S. Balabhadra, L.D. Carlos, Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry. Adv. Opt. Mater. 7, 1801239 (2019)

    Article  Google Scholar 

  35. S.A. Wade, S.F. Collins, G.W. Baxter, Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys. 94, 4743–4756 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

N. R. acknowledges Conselho Nacional de Desenvolvimento Científico e Tecnológico for the support with grant number 303129/2017-4. G. S. M. acknowledges Conselho Nacional de Desenvolvimento Científico e Tecnológico for the support with grant number 305452/2019-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glauco S. Maciel.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakov, N., Maciel, G.S. Nd3+-doped amorphous calcium yttrium silicate ceramic powder for near-infrared thermometry. Appl. Phys. A 127, 363 (2021). https://doi.org/10.1007/s00339-021-04526-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04526-5

Keywords

Navigation