Skip to main content
Log in

Electrical resistivity and magnetic susceptibility of substoichiometric CdO and In doped CdO films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Undoped and In doped substoichiometric CdO nanostructured films were prepared via vapor transport method. Mixed phases of hexagonal Cd and cubic CdO were obtained. No peaks related to In or indium oxides were observed in the In doped CdO pattern. Net-like assembles of nanowires were observed for undoped CdO sample whereas a regular morphology of equally shaped grains was observed for In doped CdO sample. The evaluated room temperature electrical resistivity values for undoped and In doped CdO films were 1.56 × 102 and 2.31 × 10–2 Ωcm, respectively. The temperature dependent resistivity measurements elucidated the semiconducting behavior for undoped CdO films, whereas a semiconductor–metal with a transition around 367 K was obtained for In doped CdO film. The magnetic susceptibility showed paramagnetic-antiferromagnetic transition with Néel temperatures of 266 and 308 for undoped and In doped CdO samples, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Ortega, G. Santana, A. Morales-Acevedo, Solid-State Electron. 44, 1765–1769 (2000)

    Article  ADS  Google Scholar 

  2. K.R. Kishore, D. Balamurugan, B.G. Jeyaprakash, Matter. Sci. Semicond. Process. 121, 105296 (2021)

    Article  Google Scholar 

  3. S. Senthil, S. Srinivasan, T. Thangeeswari, B.J. Madhu, M. Silambarasan, Nano-Struct. Nano-Objects 24, 100554 (2020)

    Article  Google Scholar 

  4. H.A. Mohamed, H.M. Ali, S.H. Mohamed, M.M. Abd El-Raheem, Eur. Phys. J. Appl. Phys. 34, 7–12 (2006)

    Article  ADS  Google Scholar 

  5. M. Raaif, S.H. Mohamed, Appl. Phys. A 123, 441 (2017)

    Article  ADS  Google Scholar 

  6. R. Bairy, S.D. Kulkarni, M.S. Murari, Opt. Laser Technol. 126, 106113 (2020)

    Article  Google Scholar 

  7. P. Christuraj, M.D. Raja, S. Pari, G.S. kumar, V.U. Shankar, in Materials Today: Proceedings. Synthesis of Mn doped CdO nanoparticles by co-precipitation method for supercapacitor applications (2021).

  8. R.M. Mohamed, Z.I. Zaki, J. Environ. Chem. Eng. 9, 104732 (2021)

    Article  Google Scholar 

  9. S.P. Desai, J. Mater. Sci. Mater. Electron. 29, 14416–14426 (2018)

    Article  Google Scholar 

  10. D. Antosoly, S. Ilangovan, M. Suganya, S. Balamurugan, A.R. Balu, Mater. Res. Innov. 22, 237–241 (2018)

    Article  Google Scholar 

  11. Y. Gülen, B. Sahin, F. Bayansal, H.A. Çetinkara, Superlatt. Microstruct. 68, 48–55 (2014)

    Article  ADS  Google Scholar 

  12. A. Eskandaria, F. Jamali-Sheini, Mater. Sci. Semicond. Process. 74, 210–217 (2018)

    Article  Google Scholar 

  13. R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, P.K. Kahol, Curr. Appl. Phys. 9, 673–677 (2009)

    Article  ADS  Google Scholar 

  14. P. Velusamy, R. Ramesh Babu, K. Ramamurthi, E. Elangovan, J. Viegas, J. Alloys Compod. 708, 804–812 (2017)

    Article  Google Scholar 

  15. R. Kumaravel, K. Ramamurthi, V. Krishnakumar, J. Phys. Chem. Solids 71, 1545–1549 (2010)

    Article  ADS  Google Scholar 

  16. S.J. Helen, S. Devadason, M. Haris, T. Mahalingam, J. Electron. Mater. 47, 2439–2446 (2018)

    Article  ADS  Google Scholar 

  17. K. Kesavan, A. Kathalingam, K. Hyun-Seok, A.R.U. Sundari, Superlattice. Microst 100, 76–88 (2016)

    Article  ADS  Google Scholar 

  18. B.J. Zheng, J.S. Lian, L. Zhao, Q. Jiang, Appl. Surf. Sci. 256, 2910–2914 (2010)

    Article  ADS  Google Scholar 

  19. Y. Zhu, R.J. Mendelsberg, J. Zhu, J. Han, A. Anders, Appl. Surf. Sci. 265, 738–744 (2013)

    Article  ADS  Google Scholar 

  20. N.M. Le, B.-T. Lee, Appl. Surf. Sci. 451, 218–222 (2018)

    Article  ADS  Google Scholar 

  21. I. Ben Miled, M. Jlassi, I. Sta, M. Dhaouadi, M. Hajji, G. Mousdis, M. Kompitsas, H. Ezzaouia, J. Mater. Sci. Mater. Electron. 29, 11286–11295 (2018)

    Article  Google Scholar 

  22. R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, P.K. Kahol, Mater. Lett. 62, 3373–3375 (2008)

    Article  Google Scholar 

  23. M.A. Flores, R. Castanedo, G. Torres, O. Zelaya, Sol. Energy Mater. Sol. Cells 93, 28–32 (2009)

    Article  Google Scholar 

  24. S. Kose, F. Atay, V. Bilgin, I. Akyuz, Int. J. Hydrog. Energy 34, 5260–5266 (2009)

    Article  Google Scholar 

  25. Y. Zhu, P. Lei, J. Zhu, J. Han, Appl. Phys. A 122(4), 410 (2016)

    Article  ADS  Google Scholar 

  26. I. Kriegel, C. Urso, D. Viola, L. De Trizio, F. Scotognella, G. Cerullo, and Liberato Manna. J. Phys. Chem. Lett. 7, 3873–3881 (2016)

    Article  Google Scholar 

  27. L.L. Pan, K.K. Meng, G.Y. Li, H.M. Sun, J.S. Lian, RSC Adv. 4, 52451–52460 (2014)

    Article  ADS  Google Scholar 

  28. S.H. Mohamed, Philos. Mag. 91, 3598 (2011)

    Article  ADS  Google Scholar 

  29. S. Sun, X. Liao, G. Yin, Y. Yao, Z. Huang, X. Pu, J. Alloys Compod. 680, 538 (2016)

    Article  Google Scholar 

  30. L.-N. Tong, Y.-C. Wang, X.-M. He, H.-B. Han, A.-L. Xia, J.-L. Hu, J. Magn. Magn. Mater. 324, 1795 (2012)

    Article  ADS  Google Scholar 

  31. M.S. Alqahtani, N.M.A. Hadia, S.H. Mohamed, Optik 145, 377–386 (2017)

    Article  ADS  Google Scholar 

  32. H. Baqiah, N.B. Ibrahim, S.A. Halim, S.K. Chen, K.P. Lim, M.M. Awang Kechik, J. Magn. Magn. Mater. 401, 102 (2016)

    Article  ADS  Google Scholar 

  33. M.A. Awad, N.M.A. Hadia, Optik 142, 334–342 (2017)

    Article  ADS  Google Scholar 

  34. L.L. Pan, G.Y. Li, S.S. Xiao, L. Zhao, J.S. Lian, J. Mater. Sci. Mater. Electron. 25, 1003–1012 (2014)

    Article  Google Scholar 

  35. F. Geiger, C.A. Busse, R.I. Loehrke, Int. J. Thermophys. 8, 425 (1987)

    Article  ADS  Google Scholar 

  36. A.T. Aldred, J.N. Pratt, J. Chem. Eng. Data 8, 429 (1963)

    Article  Google Scholar 

  37. M.S. Alqahtani, N.M.A. Hadia, S.H. Mohamed, Appl. Phys. A 124, 617 (2018)

    Article  ADS  Google Scholar 

  38. S.H. Mohamed, Z.H. Dughaish, Phil. Mag. 92, 1212–1222 (2012)

    Article  ADS  Google Scholar 

  39. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  40. K. Barbalace, Periodic Table of Elements—Sorted by Ionic Radius. EnvironmentalChemistry.com. 1995–2021, https://EnvironmentalChemistry.com/yogi/periodic/ionicradius.html. Accessed 3 Dec 2021

  41. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley, Reading, MA, 1979), p. 102

    Google Scholar 

  42. A.T. Ravichandran, A. Robert Xavier, K. Pushpanathan, B.M. Nagabhushana, R. Chandramohan, J. Mater. Sci. Mater. Electron. 27, 2693–2700 (2016)

    Article  Google Scholar 

  43. K. Usharani, A.R. Balun, V.S. Nagarethinam, M. Suganya, Prog. Nat. Sci-Mater. 25, 251–257 (2015)

    Article  Google Scholar 

  44. N. Wongcharoen, T. Gaewdang, T. Wongcharoen, Energy Procedia 15, 361–370 (2012)

    Article  Google Scholar 

  45. Q. Zhou, Z. Ji, B.B. Hu, C. Chen, L. Zhao, C. Wang, Mater. Lett. 61, 531–534 (2007)

    Article  Google Scholar 

  46. N.F. Mott, Metal-Insulator Transition (Taylor and Francis, London, 1974).

    Google Scholar 

  47. V. Bhosle, A. Tiwari, J. Narayan, J. Appl. Phys. 100, 033713–033716 (2006)

    Article  ADS  Google Scholar 

  48. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinodo, Y. Hirose, T. Shimada, T. Hasegawa, Appl. Phys. Lett. 86, 252101 (2005)

    Article  ADS  Google Scholar 

  49. V. Bhosle, A. Tiwari, J. Narayan, Appl. Phys. Lett. 88, 032106 (2006)

    Article  ADS  Google Scholar 

  50. S.H. Mohamed, M.A. Awad, M.I. Hafez, N.M.A. Hadia, Bull. Mater. Sci. 44, 81 (2021)

    Article  Google Scholar 

  51. B.J. Lokhande, P.S. Patil, M.D. Uplane, Mater. Chem. Phys. 84, 238–242 (2004)

    Article  Google Scholar 

  52. M. Anitha, K. Saravanakumar, N. Anitha, L. Amalraj, Opt. Quant. Electron. 51, 187 (2019)

    Article  Google Scholar 

  53. C. Yin, G. Li, T. Jin, J. Tao, J.W. Richardson, C.-K. Loong, F. Liao, J. Lin, J. Alloys Compod. 489, 152–156 (2010)

    Article  Google Scholar 

  54. R. Chandiramouli, B.G. Jeyaprakash, Solid State Sci. 16, 102–110 (2013)

    Article  ADS  Google Scholar 

  55. T. Ahmad, S. Khatoon, J. Mater. Res. 28, 1245 (2013)

    Article  ADS  Google Scholar 

  56. R. Nallendran, G. Selvan, A.R. Balu, Mater. Sci. Poland 37, 100–107 (2019)

    Article  ADS  Google Scholar 

  57. M. Bououdina, A.A. Dakhel, M. El-Hilo, D.H. Anjum, M.B. Kanoun, S. Goumri-Said, RSC Adv. 5, 33233 (2015)

    Article  ADS  Google Scholar 

  58. I.G. Morozov, O.V. Belousova, M.V. Kuznetcov, J. Mater. Sci. Mater. Electron. 31, 6664–6670 (2020)

    Article  Google Scholar 

  59. V.S.C. Kolluru, R.G. Hennig, Phys. Rev. Mater. 4, 045803 (2020)

    Article  Google Scholar 

  60. N. Rajkumar, V.M. Susila, K. Ramachandran, J. Exp. Nanosci. 6, 389–398 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Awad.

Ethics declarations

Conflict of interest

The authors declare that there are no financial or personal conflict of interest involved in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awad, M.A., Mohamed, S.H. & Mohamed, S.A. Electrical resistivity and magnetic susceptibility of substoichiometric CdO and In doped CdO films. Appl. Phys. A 127, 343 (2021). https://doi.org/10.1007/s00339-021-04491-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04491-z

Keywords

Navigation