Skip to main content
Log in

Structural, optical, and electrical properties of nanocrystalline CdS1−X CuSX thin films

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Thin films of CdS1−xCuSx were prepared using spray pyrolysis chemical technique on a heated glass substrate of 673 K with (300 ± 50) nm films thickness. The structural, optical, and electrical properties were investigated for pure cadmium sulfide (CdS) and copper sulfide (CuS) doped with concentration level of (3, 6, 9)%. The results of X-Ray diffraction (XRD) showed that the undoped CdS has a polycrystalline structure with a hexagonal crystalline structure, while CdS dope with CuS has two phases, hexagonal and tetrahedral crystalline structure. The optical properties were studied in the range of wavelengths (300–1100) nm and the results showed that the energy gap values reduce from 2.42 to 1.89 eV due to increasing the doping level. To study the Hall effect, the thin films were grown on a crystalline silicon wafer of (111) orientation. The results showed that the pure (CdS) films are n-type with a negative value of Hall coefficient. Increasing the CuS doping concentrations, p-type have been obtained with a positive Hall coefficient. Furthermore, the carrier’s concentration conductivity, and mobility increases with increasing the doping level. It was found that the resistivity values for all doped films, decrease with the increasing the doping concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R Demir and F Gode Chalcog. Lett. 12 43 (2015)

    Google Scholar 

  2. R Xie, J Su, M Li and L Guo Int. J. Photo Energy (2013) https://doi.org/10.1155/2013/620134

    Article  Google Scholar 

  3. H A Mohamed Solar Energy 108 360 (2014)

    Article  ADS  Google Scholar 

  4. M C Baykul and A Balcioglu Microelectr. Eng. 51 703 (2000)

    Article  Google Scholar 

  5. A Nazir, A Toma, N A Shah, S Panaro, S Butt, W Raja and A Maqsood J. Alloy Compd. 609 40 (2014)

    Article  Google Scholar 

  6. S Hariech, M S Aida, J Bougdira, M Belmahi, G Medjahdi, D Genève and H Rinnert J. Semicond. 39 034004 (2018)

    Article  ADS  Google Scholar 

  7. O I Diaz-Grijalva, D Berman-Mendoza, A Flores-Pacheco, R López-Delgado, A Ramos-Carrazco and M E Alvarez-Ramos J. Mater. Sci.: Mater. Electr. 31 1722 (2020)

    Google Scholar 

  8. A Pareek, R Thotakuri, R Dom, H G Kim and P H Borse Int. J. Hydr. Energy 42 125 (2017)

    Article  Google Scholar 

  9. S Azimi and A Nezamzadeh-Ejhieh J. Molec. Cataly A: Chem 408 152 (2015)

    Article  Google Scholar 

  10. B G An, Y W Chang, H R Kim, G Lee, M J Kang, J K Park and J C Pyun Sens. Actuat. B: Chem. 221 884 (2015)

    Article  Google Scholar 

  11. M Shaban, M Mustafa and A M El Sayed Mater. Sci. Semicond. Process. 56 329 (2016)

    Article  Google Scholar 

  12. F I Ezema, D D Hile, S C Ezugwu, R U Osuji and P U Asogwa J. Ovonic Res. 6 99 (2010)

    Google Scholar 

  13. M Isik, H H Gullu, S Delice, M Parlak and N M Gasanly Mater. Sci. Semicond. Process. 93 148 (2019)

    Article  Google Scholar 

  14. C Santiago Tepantlán, A M Perez Gonzalez and I Valeriano Arreola Revista Mexicana de física 54 112 (2008)

    ADS  Google Scholar 

  15. A Ates, M Kundakci and M Yildirim Chinese J. Phys. 45 141 (2007)

    ADS  Google Scholar 

  16. M Haesche, D Lehmhus, M Wichmann and I C M Mocellin J. Mater. Sci. Technol. 26 845 (2010)

    Article  Google Scholar 

  17. T A Abbas and J M Ahmad J. Electr. Devices 17 1413 (2013)

    Google Scholar 

  18. H A El Nazer and Y M A Mohamed Chalcogenide-based nanomaterials as photocatalysts, (Armsterdam: Elservier) p 173 (2021)

    Book  Google Scholar 

  19. A Khare, D S Kshatri and R B Sahu J. Ovonic Res. 7 36 (2011)

    Google Scholar 

  20. R Luo, B Liu, X Yang, Z Bao, B Li, J Zhang and L Feng Appl. Surf. Sci. 360 744 (2016)

    Article  ADS  Google Scholar 

  21. Y Chen, S Zhao, X Wang, Q Peng, R Lin, Y Wang and Y Li J. Am. Chem. Soci. 138 4286 (2016)

    Article  Google Scholar 

  22. A A Dubale, A G Tamirat, H M Chen, T A Berhe, C J Pan, W N Su and B J Hwang J. Mater. Chem. A 4 2205 (2016)

    Article  Google Scholar 

  23. X Deng, C Wang, H Yang, M Shao, S Zhang, X Wang and X Xu Scient. Reports 7 1 (2017)

    Article  ADS  Google Scholar 

  24. C V Stan, R Dutta, C E White, V Prakapenka and T S Duffy Phys. Rev. B 94 024104 (2016).

    Article  ADS  Google Scholar 

  25. S Thiruvenkadam, S Prabhakaran, S Chakravarty, V Ganesan, V Sathe, M S Kumar and A L Rajesh Physica B: Conden. Matt. 533 22 (2018)

    Article  ADS  Google Scholar 

  26. B Guzeldir, M Saglam and A Ates Acta Physica Polonica-Series A General Phys. 121 33 (2012)

    Article  ADS  Google Scholar 

  27. S S Chiad, N F Habubi, W H Abass and M H Abdul-Allah J. Optoelectr. Adv. Mater. 18 822 (2016)

    Google Scholar 

  28. J B Johnson, H Jones, B S Latham, J D Parker, R D Engelken and C Barber Semicond. Sci. Technol. 14 501 (1999)

    Article  ADS  Google Scholar 

  29. R Dutta, S Alptekin and N Mandal J. Phys.: Conden. Matt. 25 125401 (2013)

    ADS  Google Scholar 

  30. J Al-Zanganawee, M Al-Timimi, A Pantazi, O Brincoveanu, C Moise, R Mesterca, D Balan, S Iftimie and M Enachescu J. Ovonic Res 12 201 (2016)

    Google Scholar 

  31. M H Saeed, M H Al-Timimi and O A A Hussein Digest Nanomater. Biostruct. 16 563 (2021)

    Article  Google Scholar 

  32. Y Liu, M Liu and M T Swihart J. Phys. Chem. C 121 13435 (2017)

    Article  Google Scholar 

  33. M Shaban, M Mustafa and A M El Sayed Mater. Sci. Semicond. Process. 56 329 (2016)

    Article  Google Scholar 

  34. G A Al-Dainy, Z N Alsudani, A Hashoosh, F Watanabe, A S Biris and S E Bourdo J. Mater. Chem. C 10 4411 (2022)

    Article  Google Scholar 

  35. A A Aboud, A Mukherjee, N Revaprasadu and A N Mohamed J. Mater. Res. Technol. 8 2021 (2019)

    Article  Google Scholar 

  36. M Pal, C J Diliegros-Godines, G K Gupta, N R Mathews and A Dixit Int J Energy Res 44 5881 (2020)

    Article  Google Scholar 

  37. R Murugesan, S Sivakumar, K Karthik, P Anandan and M Harris Curr. Appl. Phys 19 1136 (2019)

    Article  ADS  Google Scholar 

  38. A T Abood, O A A Hussein, M H Al-Timimi, M Z Abdullah, H M S Al-Aani and W H Albanda In AIP Conference Proceedings, Vol 1, No. 2213, pp 020036 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebahaddin Alptekin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aelawi, W.A., Alptekin, S. & Al-Timimi, M.H. Structural, optical, and electrical properties of nanocrystalline CdS1−X CuSX thin films. Indian J Phys 97, 3949–3956 (2023). https://doi.org/10.1007/s12648-023-02736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02736-6

Keywords

Navigation