Skip to main content

Advertisement

Log in

X-ray shielding characteristics of P2O5–Nb2O5 glass doped with Bi2O3 by using EPICS2017 and Phy-X/PSD

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The current paper studied the (95-y)P2O5–yBi2O3–5Nb2O5 glass systems where y = 10, 12.5, 15, and 17.5 mol% using EPICS2017 data library to understand the radiation shielding characteristics. The investigated glass systems, PNbBi1 to PNbBi4, were evaluated in terms of linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half-value layer (HVL), tenth-value layer (TVL), mean free path (MFP), and effective atomic numbers (Zeff) at the energy levels of 20, 40, 60, 80, and 100 keV. According to the theoretical computations, Bi2O3 ensured to improve LAC parameter in all photon energies; hence, PNbBi4 can be regarded as the best. Further, we reported that a nearly 14% increase in glass density leads to improve MAC parameters against ascending photon energies. PNbBi4 can be regarded as the lowest thickness ensuring sample at all photon energies amongst the other samples with respect to HVL and TVL parameters. Moreover, inserting Bi2O3 provided lower MFP thicknesses which in turn develops better radiation shielding characteristics. We found out that Zeff shows an increasing trend as the Bi2O3 increases, but displays a decreasing trend as the photon energy increases. Additionally, a comparison of shielding properties using the EpiXS and Phy-X/PSD has been evaluated. It was figured out that there is a good agreement observed between the results of each library. The results in most energies were found to be in good agreement with low (< 1%) relative differences. Overall, the authors concluded that the Bi2O3-reinforced PNb series can be utilized in X-ray shielding applications with satisfactory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Hakan Akyildirim, F.I. Kavaz, E. El-Agawany, Y.S. Rammah, Radiation shielding features of zirconolite silicate glasses using XCOM and FLUKA simulation code. J. Non Cryst. Sol. 545, 120245 (2020)

    Article  Google Scholar 

  2. S. Yasmin, B.S. Barua, M.U. Khandaker, M.A. Rashid, D.A. Bradley, M.A. Olatunji, M. Kamal, Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Results Phys. 9, 541–549 (2018)

    Article  ADS  Google Scholar 

  3. O. Agar, M.I. Sayyed, H.O. Tekin, K.M. Kaky, S.O. Baki, I. Kityk, An investigation on shielding properties of BaO, MoO3 and P2O5 based glasses using MCNPX code. Results Phys. 12, 629–634 (2019)

    Article  ADS  Google Scholar 

  4. S. Yasmin, Z.S. Rozaila, M.U. Khandaker, B.S. Barua, F.U.Z. Chowdhury, M.A. Rashid, D.A. Bradley, The radiation shielding offered by the commercial glass installed in Bangladeshi dwellings. Radiat. Eff. Defects Sol. 173(7–8), 657–672 (2018)

    Article  ADS  Google Scholar 

  5. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356–360 (2018)

    Article  ADS  Google Scholar 

  6. M.I. Sayyed, Y. Al-Hadeethi, M.M. AlShammari, M. Ahmed, S.H. Al-Heniti, Y.S. Rammah, Physical, optical and gamma radiation shielding competence of newly borotellurite based glasses: TeO2–B2O3–ZnO–Li2O3–Bi2O3. Ceram. Int. 47, 611–618 (2021)

    Article  Google Scholar 

  7. Y.S. Alajerami, D. Drabold, M.H.A. Mhareb, K.L.A. Cimatu, G. Chen, M. Kurudirek, Radiation shielding properties of bismuth borate glasses doped with different concentrations of cadmium oxides. Ceram. Int. 46(8), 12718–12726 (2020)

    Article  Google Scholar 

  8. Y. Al-Hadeethi, M.I. Sayyed, BaO–Li2O–B2O3 glass systems: potential utilization in gamma radiation protection. Prog. Nucl. Energy 129, 103511 (2020)

    Article  Google Scholar 

  9. M.H.A. Mhareb, Physical, optical and shielding features of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3. Appl. Phys. A 126, 71 (2020)

    Article  ADS  Google Scholar 

  10. Y. Al-Hadeethi, S.A. Tijani, The use of lead-free transparent 50BaO-(50–x)borosilicate-xBi2O3 glass system as radiation shields in nuclear medicine. J. Alloy. Compd. 803, 625–630 (2019)

    Article  Google Scholar 

  11. S.A. Tijani, Y. Al-Hadeethi, The influence of TeO2 and Bi2O3 on the shielding ability of lead-free transparent bismuth tellurite glass at low gamma energy range. Ceram. Int. 45, 23572–23577 (2019)

    Article  Google Scholar 

  12. H.S. Alorfi, M.A. Hussein, S.A. Tijani, The use of rocks in lieu of bricks and concrete as radiation shielding barriers at low gamma and nuclear medicine energies. Constr. Buil. Mater. 251, 118908 (2020)

    Article  Google Scholar 

  13. D.E. Cullen, A survey of photon cross section data for use in EPICS2017, IAEA-NDS-225, rev.1 (2018)

  14. D.E. Cullen, EPICS2017: April 2019 Status Report (2019)

  15. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, M.W. Herman, A.A. Sonzogni, Y. Danon, A.D. Carlson, M. Dunn, D.L. Smith, G.M. Hale, G. Arbanas, R. Arcilla, C.R. Bates, B. Beck, B. Becker, F. Brown, R.J. Casperson, J. Conlin, D.E. Cullen, M.A. Descalle, R. Firestone, T. Gaines, K.H. Guber, A.I. Hawari, J. Holmes, T.D. Johnson, T. Kawano, B.C. Kiedrowski, A.J. Koning, S. Kopecky, L. Leal, J.P. Lestone, C. Lubitz, J.I. Márquez Damián, C.M. Mattoon, E.A. McCutchan, S. Mughabghab, P. Navratil, D. Neudecker, G.P.A. Nobre, G. Noguere, M. Paris, M.T. Pigni, A.J. Plompen, B. Pritychenko, V.G. Pronyaev, D. Roubtsov, D. Rochman, P. Romano, P. Schillebeeckx, S. Simakov, M. Sin, I. Sirakov, B. Sleaford, V. Sobes, E.S. Soukhovitskii, I. Stetcu, P. Talou, I. Thompson, S. van der Marck, L. Welser-Sherrill, D. Wiarda, M. White, J.L. Wormald, R.Q. Wright, M. Zerkle, G. Žerovnik, Y. Zhu, ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl. Data Sheets 148, 1–142 (2018)

    Article  ADS  Google Scholar 

  16. M.C. Han, M.G. Pia, P. Saracco, T. Basaglia, First assessment of ENDF/B-VIII and EPICS atomic data libraries. IEEE Trans. Nucl. Sci. 65, 2268–2278 (2018). https://doi.org/10.1109/TNS.2018.2849328

    Article  ADS  Google Scholar 

  17. T. Basaglia, M. Bonanomi, F. Cattorini, C. Choi, M.C. Han, G. Hoff, C.H. Kim, S. Hun Kim, M. Marcoli, M.G. Pia, P. Saracco, Assessment of new evaluated atomic data libraries in ENDF/B-VIII.0, 2018 IEEE nuclear science symposium and medical imaging conference NSS/MIC 2018—Proceedings 1–2 (2018). https://doi.org/10.1109/NSSMIC.2018.8824405

  18. M. Laourayed, M. El Moudane, M. Khachani, M. Boudalia, A. Guenbour, A. Bellaouchou, M. Tabyaoui, Effect of the Bi2O3 on the thermal, structural and chemical durability of some bismuth niobium phosphate glasses. Mater. Today Proc. 13, 974–981 (2019)

    Article  Google Scholar 

  19. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  20. F.C. Hila, A. Asuncion-Astronomo, C.A.M. Dingle, J.F.M. Jecong, A.M.V. Javier-Hila, M.B.Z. Gili, C.V. Balderas, G.E.P. Lopez, N.R.D. Guillermo, A.V. Amorsolo Jr., EpiXS: a windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017. Radiat. Phys. Chem. 182, 109331 (2021)

    Article  Google Scholar 

  21. D.E. Cullen, J.H. Hubbell, L. Kissel, EPDL97: the evaluated photo data library `97 version. United States, (1997)

  22. M.G. Dong, O. Agar, H.O. Tekin, O. Kilicoglu, K.M. Kaky, M.I. Sayyed, A comparative study on gamma photon shielding features of various germanate glass systems. Compos. Part B Eng. 165, 636–647 (2019)

    Article  Google Scholar 

  23. A.H. Almuqrin, M.I. Sayyed, Radiation shielding characterizations and investigation of TeO2–WO3–Bi2O3 and TeO2–WO3–PbO glasses. Appl. Phys. A 127, 190 (2021)

    Article  ADS  Google Scholar 

  24. R. Kurtulus, T. Kavas, Gamma ray shielding characteristics of borosilicate glass containing ZnO from 0.015 to 10 MeV. Cumhur. Sci. J. 41(4), 976–986 (2020). https://doi.org/10.17776/csj.712985

    Article  Google Scholar 

  25. S. Stalin et al., Structural, optical features and gamma ray shielding properties of Bi2O3–TeO2–B2O3-GeO2 glass system. Ceram. Int. 46(11), 17325–17334 (2020). https://doi.org/10.1016/j.ceramint.2020.04.021

    Article  Google Scholar 

  26. A. Temir, K.S. Zhumadilov, МV. Zdorovets, I.V. Korolkov, A. Kozlovskiy, A.V. Trukhanov, Synthesis, phase transformations, optical properties and efficiency of gamma radiation shielding by Bi2O3-TeO2-WO3 ceramics. Opt. Mater. (Amst) 113, 110846 (2021). https://doi.org/10.1016/j.optmat.2021.110846

    Article  Google Scholar 

  27. K.K. Kadyrzhanov, D.I. Shlimas, A.L. Kozlovskiy, M.V. Zdorovets, Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications. J. Mater. Sci. Mater. Electron. 31(14), 11729–11740 (2020). https://doi.org/10.1007/s10854-020-03724-w

    Article  Google Scholar 

  28. M.I. Sayyed, K.A. Mahmoud, E. Lacomme, M.M. AlShammari, N. Dwaikat, Y.S.M. Alajerami, M.H.A. Mhareb, Development of a novel MoO 3-doped borate glass network for gamma-ray shielding applications. Eur. Phys. J. Plus 136(1), 1–16 (2021). https://doi.org/10.1140/epjp/s13360-020-01011-5

    Article  Google Scholar 

  29. A. Temir, K. Sh Zhumadilov, M.V. Zdorovets, I.V. Korolkov, A. Kozlovskiy, A.V. Trukhanov, Synthesis, phase transformations, optical properties and efficiency of gamma radiation shielding by Bi2O3-TeO2-WO3 ceramics. Opt. Mater. 113, 110846 (2021)

    Article  Google Scholar 

  30. M.I. Sayyed, G. Lakshminarayana, M.G. Dong, M. Çelikbilek Ersundu, A.E. Ersundu, I.V. Kityk, Investigation on gamma and neutron radiation shielding parameters for BaO/SrO–Bi2O3–B2O3 glasses. Radiat. Phys. Chem. 145, 26–33 (2018)

    Article  ADS  Google Scholar 

  31. E.S.A. Waly, G.S. Al-Qous, M.A. Bourham, Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV. Radiat. Phys. Chem. 150(February), 120–124 (2018). https://doi.org/10.1016/j.radphyschem.2018.04.029

    Article  ADS  Google Scholar 

  32. H.O. Tekin, E. Kavaz, A. Papachristodoulou, M. Kamislioglu, O. Agar, E.A. Guclu, M.I. Sayyed, Characterization of SiO2–PbO–CdO–Ga2O3 glasses for comprehensive nuclear shielding performance: alpha, proton, gamma, neutron radiation. Ceram. Int. 45(15), 19206–19222 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-Track Research Funding Program

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Sayyed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayyed, M.I., Almuqrin, A.H., Kurtulus, R. et al. X-ray shielding characteristics of P2O5–Nb2O5 glass doped with Bi2O3 by using EPICS2017 and Phy-X/PSD. Appl. Phys. A 127, 243 (2021). https://doi.org/10.1007/s00339-021-04405-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04405-z

Keywords

Navigation