Skip to main content
Log in

(59.5–x) P2O5–30Na2O–10Al2O3–0.5CoO–xNd2O3 glassy system: an experimental investigation on structural and gamma-ray shielding properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, five different glasses encoded ND1, ND2, ND3, ND4 and ND5 based on (59.5–x) P2O5–30Na2O–10Al2O3–0.5CoO–xNd2O3 (x = 1, 2, 3, 4 and 5 mol%) glass system were fabricated. Using two γ- ray energies emitted from point sources, 356 keV (133Ba) and 662 keV (137Cs), γ-ray attenuation coefficients were measured as a function of the Nd2O3 concentration. The theoretical values of the mass attenuation coefficient were calculated using the XCOM program at 0.015–15-MeV photon energies. As it is underlined in the results section, the mass attenuation coefficient increases as the Nd2O3 concentration increases. X-ray diffraction (XRD) was characterized for fabricated glasses. Moreover, different shielding parameters such as half-value layer (HVL), mean free path (MFP), effective atomic numbers (Zeff), basic gamma-ray attenuation properties such as exposure buildup factors (EBF) and energy absorption buildup factors (EABF) at different penetration depths were calculated. With increasing Nd2O3 additive in glass samples, half-value layer (HVL), average free path (MFP), exposure and energy absorption buildup factor (EBF and EABF) values decrease. On the other hand, Zeff values increase with increasing Nd2O3 additive in glass samples at the photon energy 0.015–15 MeV. The results highlighted that ND5 sample with highest value of Nd2O3 (5 mol%) showed excellent nuclear radiation shielding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.E. Hassan, H.M. Badran, A. Aydarous, T. Sharshar, Studying the effect of nano lead compounds additives on the concrete shielding properties for γ-rays. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact Mater. Atoms 360, 81–89 (2015). https://doi.org/10.1016/j.nimb.2015.07.126

    Article  ADS  Google Scholar 

  2. A.S. Wagh, S.Y. Sayenko, A.N. Dovbnya, V.A. Shkuropatenko, R.V. Tarasov, A.V. Rybka, A.A. Zakharchenko, Durability and shielding performance of borated ceramicrete coatings in beta and gamma radiation fields. J. Nucl. Mater. 462, 165–172 (2015). https://doi.org/10.1016/j.jnucmat.2015.03.049

    Article  ADS  Google Scholar 

  3. D.K. Gaikwad, M.I. Sayyed, S.S. Obaid, S.A.M. Issa, P.P. Pawar, Gamma ray shielding properties of TeO2–ZnF2–As2O3–Sm2O3 glasses. J. Alloys Compd. 765, 451–458 (2018). https://doi.org/10.1016/j.jallcom.2018.06.240

    Article  Google Scholar 

  4. O. Agar, Z.Y. Khattari, M.I. Sayyed, H.O. Tekin, S. Al-Omari, M. Maghrabi, M.H.M. Zaid, I.V. Kityk, Evaluation of the shielding parameters of alkaline earth based phosphate glasses using MCNPX code. Results Phys. 12, 101–106 (2019). https://doi.org/10.1016/j.rinp.2018.11.054

    Article  ADS  Google Scholar 

  5. O. Agar, H.O. Tekin, M.I. Sayyed, M.E. Korkmaz, O. Culfa, C. Ertugay, Experimental investigation of photon attenuation behaviors for concretes including natural perlite mineral. Results Phys. 12, 237–243 (2019). https://doi.org/10.1016/j.rinp.2018.11.053

    Article  ADS  Google Scholar 

  6. H.O. Tekin, E.E. Altunsoy, E. Kavaz, M.I. Sayyed, O. Agar, M. Kamislioglu, Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. Results Phys. 12, 1457–1464 (2019). https://doi.org/10.1016/j.rinp.2019.01.060

    Article  ADS  Google Scholar 

  7. M.G. Dong, O. Agar, H.O. Tekin, O. Kilicoglu, K.M. Kaky, M.I. Sayyed, A Comparative study on gamma photon shielding features of various germanate glass systems. Compos. Part B Eng. 165, 636–647 (2019). https://doi.org/10.1016/j.compositesb.2019.02.022

    Article  Google Scholar 

  8. A. Sharma, M.I. Sayyed, O. Agar, H.O. Tekin, Simulation of shielding parameters for TeO2–WO3–GeO2 glasses using FLUKA code. Results Phys. 13, 102199 (2019). https://doi.org/10.1016/j.rinp.2019.102199

    Article  Google Scholar 

  9. S. Tuscharoen, J. Kaewkhao, P. Limkitjaroenporn, P. Limsuwan, W. Chewpraditkul, Improvement of BaO:B2O3: fly ash glasses: radiation shielding, physical and optical properties. Ann. Nucl. Energy 49, 109–113 (2012). https://doi.org/10.1016/j.anucene.2012.05.017

    Article  Google Scholar 

  10. S.R. Manohara, S.M. Hanagodimath, L. Gerward, Photon interaction and energy absorption in glass: a transparent gamma ray shield. J. Nucl. Mater. 393, 465–472 (2009). https://doi.org/10.1016/j.jnucmat.2009.07.001

    Article  ADS  Google Scholar 

  11. C. Bootjomchai, J. Laopaiboon, C. Yenchai, R. Laopaiboon, Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses. Radiat. Phys. Chem. 81, 785–790 (2012). https://doi.org/10.1016/j.radphyschem.2012.01.049

    Article  ADS  Google Scholar 

  12. S.P. Edirisinghe, C.A. Hogarth, Optical properties of some copper phosphate glasses containing calcium and barium. J. Mater. Sci. Lett. 8, 789–792 (1989). https://doi.org/10.1007/bf01730139

    Article  Google Scholar 

  13. M.A. Karakassides, A. Saranti, I. Koutselas, Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. J. Non-Cryst. Solids 347, 69–79 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.08.111

    Article  ADS  Google Scholar 

  14. A. Mogus-Milankovic, A. Gajovic, A. Santic, D.E. Day, Structure of sodium phosphate glasses containing Al2O3 and/or Fe2O3. Part I. J. Non-Cryst. Solids 289, 204–213 (2001). https://doi.org/10.1016/S0022-3093(01)00701-3

    Article  ADS  Google Scholar 

  15. J. Yifen, J. Dehua, C. Xiangsheng, B. Beiya, H. Xihuai, Raman spectrum studies of the glasses in the system Na2O–Al2O3–P2O5. J. Non-Cryst. Solids 80, 147–151 (1986). https://doi.org/10.1016/0022-3093(86)90388-1

    Article  ADS  Google Scholar 

  16. S.M. Abo-Naf, N.A. Ghoneim, H.A. Ei-Batal, Preparation and characterization of solegel derived glasses in the ternary Na2O–Al2O3–P2O5 system. J. Mater. Sci. Mater. Electron. 15, 273–282 (2004). https://doi.org/10.1023/B:JMSE.0000024226.51362.de

    Article  Google Scholar 

  17. Y. Yue, Y. Wang, Y. Cao, S. Chen, Q. Zhou, W. Chen, L. Hu, Effect of Al2O3 on structure and properties of Al2O3–K2O–P2O5 glasses. Opt. Mater. Express 8, 245–258 (2018). https://doi.org/10.1364/OME.8.000245

    Article  ADS  Google Scholar 

  18. Y.B. Saddeek, M.A. Kaid, M.R. Ebeid, FTIR and physical features of Al2O3–La2O3–P2O5–PbO glasses. J. Non-Cryst. Solids 387, 30–35 (2014). https://doi.org/10.1016/j.jnoncrysol.2013.12.029

    Article  ADS  Google Scholar 

  19. A. Faivre, F. Despetis, L. Duffours, P. Colombel, Effect of CaO and Al2O3 addition on the properties of K2O–Na2O–P2O5 glass system. Int. J. Appl. Glass Sci. 10, 162–171 (2019). https://doi.org/10.1111/ijag.13066

    Article  Google Scholar 

  20. D. Manzani, J.B. Souza Junior, A.S. Reyna, M.L. Silva Neto, J.E.Q. Bautista, S.J.L. Ribeiro, C.B. de Araújo, Phosphotellurite glass and glass-ceramics with high TeO2 contents: thermal, structural and optical properties. Dalton Trans. 48, 6261–6272 (2019). https://doi.org/10.1039/C9DT00691E

    Article  Google Scholar 

  21. A.K. Yadav, P. Singh, A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 5, 67583–67609 (2015). https://doi.org/10.1039/C5RA13043C

    Article  Google Scholar 

  22. A. Langar, N. Sdiri, H. Elhouichet, M. Ferid, Structure and electrical characterization of ZnO–Ag phosphate glasses. Results Phys. 7, 1022–1029 (2017). https://doi.org/10.1016/j.rinp.2017.02.028

    Article  ADS  Google Scholar 

  23. Q. Yin, S. Kang, X. Wang, S. Li, D. He, L. Hu, Effect of PbO on the spectral and thermo-optical properties of Nd3 p-doped phosphate laser glass. Opt. Mater. 66, 23–28 (2017). https://doi.org/10.1016/j.optmat.2017.01.036

    Article  ADS  Google Scholar 

  24. M.K. Narayanan, H.D. Shashikala, Thermal and optical properties of BaO–CaF2–P2O5 glasses. J. Non-Cryst. Solids 422, 6–11 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.04.038

    Article  ADS  Google Scholar 

  25. H.O. Tekin, L.R.P. Kassab, S.A.M. Issa, C.D.S. Bordon, E.E. Altunsoy Guclu, G.R. da Silva Mattos, O. Kilicoglu, Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.08.204

    Article  Google Scholar 

  26. M.I. Sayyed, S.A.M. Issa, H.O. Tekin, Y.B. Saddeek, Comparative study of gamma-ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Mater. Chem. Phys. (2018). https://doi.org/10.1016/j.matchemphys.2018.06.034

    Article  Google Scholar 

  27. N. Chanthima, J. Kaewkhao, Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV. Ann. Nucl. Energy 55, 23–28 (2013). https://doi.org/10.1016/j.anucene.2012.12.011

    Article  Google Scholar 

  28. M.I. Sayyed, S.A.M. Issa, S.H. Auda, Assessment of radio-protective properties of some anti-inflammatory drugs. Prog. Nucl. Energy 100, 297–308 (2017). https://doi.org/10.1016/j.pnucene.2017.07.003

    Article  Google Scholar 

  29. S.A.M. Issa, M.I. Sayyed, M.H.M. Zaid, K.A. Matori, Photon parameters for gamma-rays sensing properties of some oxide of lanthanides. Results Phys. 9, 206–210 (2018). https://doi.org/10.1016/j.rinp.2018.02.039

    Article  ADS  Google Scholar 

  30. A.A.A. Darwish, S.A.M. Issa, M.M. El-Nahass, Effect of gamma irradiation on structural, electrical and optical properties of nanostructure thin films of nickel phthalocyanine. Synth. Met. 215, 200–206 (2016). https://doi.org/10.1016/j.synthmet.2016.03.002

    Article  Google Scholar 

  31. S.A.M. Issa, A.A.A. Darwish, M.M. El-Nahass, The evolution of gamma-rays sensing properties of pure and doped phthalocyanine. Prog. Nucl. Energy. 100, 276–282 (2017). https://doi.org/10.1016/j.pnucene.2017.06.016

    Article  Google Scholar 

  32. P. Sathiyaraj, E.J.J. Samuel, C.C.S. Valeriano, M. Kurudirek, Effective atomic number and buildup factor calculations for metal nano particle doped polymer gel. Vacuum 143, 138–149 (2017). https://doi.org/10.1016/j.vacuum.2017.06.005

    Article  ADS  Google Scholar 

  33. S.A.M. Issa, H.O. Tekin, T.T. Erguzel, G. Susoy, The effective contribution of PbO on nuclear shielding properties of xPbO–(100–x)P2O5 glass system: a broad range investigation. Appl. Phys. A 125, 640 (2019). https://doi.org/10.1007/s00339-019-2941-x

    Article  ADS  Google Scholar 

  34. S.A.M. Issa, H.O. Tekin, The multiple characterization of gamma, neutron and proton shielding performances of xPbO–(99–x)B2O3–Sm2O3 glass system. Ceram. Int. 45, 23561–23571 (2019). https://doi.org/10.1016/j.ceramint.2019.08.065

    Article  Google Scholar 

  35. M. Kurudirek, S. Topcuoglu, Investigation of human teeth with respect to the photon interaction, energy absorption and buildup factor. Nucl. Instru. Methods Phys Res. Sect. B Beam Interact Mater. Atoms 269, 1071–1081 (2011). https://doi.org/10.1016/j.nimb.2011.03.004

    Article  ADS  Google Scholar 

  36. V.P. Singh, N.M. Badiger, Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry. Radiat. Phys. Chem. 104, 61–67 (2014). https://doi.org/10.1016/j.radphyschem.2013.11.025

    Article  ADS  Google Scholar 

  37. Y. Karabul, L. Amon Susam, O. İçelli, Ö. Eyecioğlu, Computation of EABF and EBF for basalt rock samples. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 797, 29–36 (2015). https://doi.org/10.1016/j.nima.2015.06.024

    Article  ADS  Google Scholar 

  38. I.S. Mahmoud, S.A.M. Issa, Y.B. Saddeek, H.O. Tekin, O. Kilicoglu, T. Alharbi, M.I. Sayyed, T.T. Erguzel, R. Elsaman, Gamma, neutron shielding and mechanical parameters for lead vanadate glasses. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.04.105

    Article  Google Scholar 

  39. S.A.M. Issa, A.M.A. Mostafa, T.A. Hanafy, M. Dong, X. Xue, Comparison study of photon attenuation characteristics of poly vinyl alcohol (PVA) doped with Pb(NO3)2 by MCNP5 code, XCOM and experimental results. Prog. Nucl. Energy 111, 15–23 (2019). https://doi.org/10.1016/j.pnucene.2018.10.018

    Article  Google Scholar 

  40. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: photon cross section database (version 1.5). National Institute of Standards and Technology, Gaithersburg, MD (2010). http://physics.nist.gov/xcom. Accessed 8 June 2020

  41. R. Divina, K. Marimuthu, M.I. Sayyed, H.O. Tekin, O. Agar, Physical, structural, and radiation shielding properties of B2O3–MgO–K2O–Sm2O3 glass network modified with TeO2. Radiat. Phys. Chem. 160, 75–82 (2019). https://doi.org/10.1016/j.radphyschem.2019.03.029

    Article  ADS  Google Scholar 

  42. E. Kavaz, H.O. Tekin, O. Agar, E.E. Altunsoy, O. Kilicoglu, M. Kamislioglu, M.M. Abuzaid, M.I. Sayyed, The Mass stopping power/projected range and nuclear shielding behaviors of barium bismuth borate glasses and influence of cerium oxide. Ceram. Int. 45, 15348–15357 (2019). https://doi.org/10.1016/j.ceramint.2019.05.028

    Article  Google Scholar 

  43. H.O. Tekin, E. Kavaz, E.E. Altunsoy, M. Kamislioglu, O. Kilicoglu, O. Agar, M.I. Sayyed, N. Tarhan, Characterization of a broad range gamma-ray and neutron shielding properties of MgO–Al2O3–SiO2–B2O3 and Na2O–Al2O3–SiO2 glass systems. J. Non-Cryst. Solids 518, 92–102 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.05.012

    Article  ADS  Google Scholar 

  44. H.O. Tekin, E. Kavaz, A. Papachristodoulou, M. Kamislioglu, O. Agar, E.E. Altunsoy Guclu, O. Kilicoglu, M.I. Sayyed, Characterization of SiO2–PbO–CdO–Ga2O3 glasses for comprehensive nuclear shielding performance: alpha, proton, gamma, neutron. Radiat. Ceram. Int. 45, 19206–19222 (2019). https://doi.org/10.1016/j.ceramint.2019.06.168

    Article  Google Scholar 

  45. S.A.M. Issa, G. Susoy, A.M. Ali, H.O. Tekin, Y.B. Saddeek, A. Al-Hajry, H. Algarni, P.S. Anjana, O. Agar, The effective role of La2O3 contribution on zinc borate glasses: radiation shielding and mechanical properties. Appl. Phys. A 125, 867 (2019). https://doi.org/10.1007/s00339-019-3169-5

    Article  ADS  Google Scholar 

  46. M.R. Kacal, H. Polat, M. Oltulu, F. Akman, O. Agar, H.O. Tekin, Gamma shielding and compressive strength analyses of polyester composites reinforced with zinc: an experiment, theoretical, and simulation based study. Appl. Phys. A 126, 205 (2020). https://doi.org/10.1007/s00339-020-3382-2

    Article  ADS  Google Scholar 

  47. M.S. Al-Buriahi, H.O. Tekin, E. Kavaz, B.T. Tonguc, Y.S. Rammah, New transparent rare earth glasses for radiation protection applications. Appl. Phys. A 125, 866 (2019). https://doi.org/10.1007/s00339-019-3077-8

    Article  ADS  Google Scholar 

  48. S.A.M. Issa, Y.B. Saddeek, M.I. Sayyed, H.O. Tekin, O. Kilicoglu, Radiation shielding features using MCNPX code and mechanical properties of the PbO–Na2O–B2O3–CaO–Al2O3–SiO2 glass systems. Compos. Part B Eng. 167, 231–240 (2019). https://doi.org/10.1016/j.compositesb.2018.12.029

    Article  Google Scholar 

  49. A.S. Abouhaswa, Y.S. Rammah, M.I. Sayyed, H.O. Tekin, Synthesis, structure, optical and gamma radiation shielding properties of B2O3–PbO2–Bi2O3 glasses. Compos. B 172, 218–225 (2019). https://doi.org/10.1016/j.compositesb.2019.05.040

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. O. Tekin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsaman, R., Issa, S.A.M., Tekin, H.O. et al. (59.5–x) P2O5–30Na2O–10Al2O3–0.5CoO–xNd2O3 glassy system: an experimental investigation on structural and gamma-ray shielding properties. Appl. Phys. A 126, 502 (2020). https://doi.org/10.1007/s00339-020-03697-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03697-x

Keywords

Navigation