Skip to main content
Log in

Tunable phase transition in (Bi0.5Na0.5)0.94Ba0.06TiO3 by B-site cations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The role of B-site ions of Bi0.5Na0.5TiO3 (BNT) on its complex phase transition remains unclear due to its polarization attributing to both Bi and Ti. In this paper, the phase transition of (Bi0.5Na0.5)0.94Ba0.06(Ti1−0.01b/4B0.01)O3 (BNT6BT) (B = Nb, Mn, Fe, and Cu) ceramics was modified by low-concentration donor doping (Nb) and acceptor doping (Mn, Fe, and Cu) in order to determine the origin of phase transition behavior. The phase structure, microstructure, local structure/lattice vibration, phase transition temperature, and dielectric properties of BNT6BT-Nb, Mn, Fe, and Cu ceramics were investigated. Results showed that all samples formed a single perovskite phase at room temperature, and donor (Nb) and acceptor (Mn, Fe, and Cu) doping can regulate the ratio of R3c and P4bm coexisting as nanoscale entities. The grains show polyhedral morphology, and average grain size lies between 1 and 2 μm. The Raman spectroscopy study shows that doping modification can change the phase transition temperature. The relation is in well agreement with the three different dielectric anomalies derived from the dielectric curves of εr versus T. Low concentration of cation (Nb, Mn, Fe, and Cu) doping can tailor the dielectric permittivity, depolarization temperature, and phase transition temperature of BNT6BT. All samples exhibit a large dielectric constant and good frequency stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.A. Neppiras, Piezoelectric ceramics 1971 B. Jaffe, W. R. Cook Jr and H. Jaffe. London and New York: Academic Press. 317 pp., #5.50. J. Sound Vib. 20(4), 562–563 (1972)

    ADS  Google Scholar 

  2. M. Okayasu et al., Temperature dependence of the fatigue and mechanical properties of lead zirconate titanate piezoelectric ceramics. Int. J. Fatigue. 31(8–9), 1254–1261 (2009)

    Google Scholar 

  3. T. Takenaka, H. Nagata, Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25(12), 2693–2700 (2005)

    Google Scholar 

  4. Y.M. Li et al., Dielectric and piezoelecrtic properties of lead-free (Na0.5Bi0.5)TiO3-NaNbO3 ceramics. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 112(1), 5–9 (2004)

    Google Scholar 

  5. G.C. Liu et al., Large strain and relaxation behavior in CeO2 doped Bi0.487Na0.427K0.06Ba0.026TiO3 piezoceramics. Ceram. Int. 42(3), 3938–3946 (2016)

    Google Scholar 

  6. Y.H. Xu et al., Antiferroelectricity in tantalum doped (Bi0.5Na0.5)(0.94)Ba0.06TiO3 lead-free ceramics. Ceram. Int. 42(3), 4313–4322 (2016)

    Google Scholar 

  7. C. Ang, Z. Yu, Dielectric and ferroelectric properties in (Sr, Ni, Na)TiO3 solid solutions. J. Appl. Phys. 107(11), 5 (2010)

    Google Scholar 

  8. E. Aksel, J.L. Jones, Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 10, 1935–1954 (2010)

    Google Scholar 

  9. D.Q. Xiao et al., Investigation on the composition design and properties study of perovskite lead-free piezoelectric ceramics. J. Mater. Sci. 44(19), 5408–5419 (2009)

    ADS  Google Scholar 

  10. L.A. Schmitt et al., Structural investigations on lead-free Bi1/2Na1/2TiO3-based piezoceramics. J. Mater. Sci. 46(12), 4368–4376 (2011)

    ADS  Google Scholar 

  11. H. Simons et al., Electric-field-induced strain mechanisms in lead-free 94%(Bi1/2Na1/2)TiO3–6%BaTiO3. Appl. Phys. Lett. 98(8), 3 (2011)

    Google Scholar 

  12. L. Chen et al., Enhancement of photovoltaic properties with Nb modified (Bi, Na) TiO3–BaTiO3 ferroelectric ceramics. J. Alloy. Compd. 587, 339–343 (2014)

    Google Scholar 

  13. F. Bahri et al., Dielectric and pyroelectric studies on the Ba1–3aBi2aTiO3 classical and relaxor ferroelectric ceramics. Solid State Sci. 5(9), 1235–1238 (2003)

    ADS  Google Scholar 

  14. L.J. Liu, H.Q. Fan, Influence of sintering temperatures on the electrical property of bismuth sodium titanate based piezoelectric ceramics. J. Electroceram. 16(4), 293–296 (2006)

    Google Scholar 

  15. H.Q. Fan, L.J. Liu, Microstructure and electrical properties of the rare-earth doped 0.94Na(0.5)Bi(0.5)TiO(3)–0.06BaTiO(3) piezoelectric ceramics. J. Electroceram. 21(1–4), 300–304 (2008)

    Google Scholar 

  16. L.J. Liu et al., Effect of sintering temperature on the structure and properties of cerium-doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO(3) piezoelectric ceramics. J. Alloys Compd. 458(1–2), 504–508 (2008)

    Google Scholar 

  17. T. Takenaka et al., Mechanical properties of (BiNa)1/2TiO3-based piezoelectric ceramics. Silic. Ind. 7, 136–142 (1993)

    Google Scholar 

  18. A. Hussain et al., Structural and electromechanical properties of Na0.5Bi0.5TiO3 ceramics produced by different synthesis routes. IOP Conf. Ser. Mater. Sci. Eng. 146, 012006 (2016)

    Google Scholar 

  19. G.O. Jones, P.A. Thomas, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr. Sect. B 58(2), 168–178 (2002)

    Google Scholar 

  20. G.O. Jones et al., Investigation of a peculiar relaxor ferroelectric: Na 0.5 Bi 0.5 TiO3. Ferroelectrics 270(1), 191–196 (2002)

    Google Scholar 

  21. L.J. Liu et al., Thermal evolution of polar nanoregions identified by the relaxation time of electric modulus in the Bi1/2Na1/2TiO3 system. EPL 118(4), 5 (2017)

    Google Scholar 

  22. W. Jo et al., On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol% BaTiO3. J. Appl. Phys. 110(7), 074106 (2011)

    ADS  Google Scholar 

  23. J.D. Zang et al., Impedance spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 ceramics modified with (K0.5Na0.5)NbO3. J. Am. Ceram. Soc. 97(5), 1523–1529 (2014)

    Google Scholar 

  24. L. Zhou et al., Manipulating the ferroelectric, dielectric and photoluminescence performance of Ba0·77Ca0·23TiO3 ceramics through Pr3+ ions doping. J. Alloy. Compd. 810, 151897 (2019)

    Google Scholar 

  25. P. Du et al., Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application. J. Appl. Phys. 116(1), 014102 (2014)

    ADS  Google Scholar 

  26. B.W. Eerd et al., The structural complexity of (Bi0.5Na0.5)TiO3–BaTiO3 as revealed by Raman spectroscopy. Phys. Rev. B 82(10), 104112 (2010)

    ADS  Google Scholar 

  27. X. Ma et al., Effect of Eu doping on structure and electrical properties of lead-free (Bi0.5Na0.5)(0.94)Ba006TiO3 ceramics. Ceram. Int. 40(5), 7007–7013 (2014)

    Google Scholar 

  28. J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 192(1–2), 55–69 (1993)

    ADS  Google Scholar 

  29. P. Thompson, D.E. Cox, J.B. Hastings, Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Crystallogr. 20(2), 79–83 (1987)

    Google Scholar 

  30. L. Li et al., Electrocaloric effect in La-doped BNT-6BT relaxor ferroelectric ceramics. Ceram. Int. 44(1), 343–350 (2018)

    Google Scholar 

  31. T. Takenaka, K.-I. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30(Part 1, 9B), 2236–2239 (1991)

    ADS  Google Scholar 

  32. M. Onoe, Useful formulas for piezoelectric ceramic resonators and their application to measurement of parameters. J. Acoust. Soc. Am 41(4B), 1223–1223 (1967)

    Google Scholar 

  33. J. Petzelt et al., Infrared, Raman and high-frequency dielectric spectroscopy and the phase transitions in Na1/2Bi1/2TiO3. J. Phys.-Condens. Matter 16(15), 2719–2731 (2004)

    ADS  Google Scholar 

  34. B.K. Barick et al., Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3. J. Phys. D-Appl. Phys. 44(35), 10 (2011)

    Google Scholar 

  35. J. Hao et al., Switching of morphotropic phase boundary and large strain response in lead-free ternary (Bi0.5Na0.5)TiO3–(K0.5Bi0.5)TiO3–(K0.5Na0.5)NbO3 system. J. Appl. Phys. 113(11), 114106 (2013)

    ADS  Google Scholar 

  36. E.-M. Anton et al., Effect of K0.5Na0.5NbO3on properties at and off the morphotropic phase boundary in Bi0.5Na0.5TiO3–Bi05K05TiO3 ceramics. Jpn. J. Appl. Phys. 50(5), 055802 (2011)

    ADS  Google Scholar 

  37. D. Schutz et al., Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate. Adv. Func. Mater. 22(11), 2285–2294 (2012)

    Google Scholar 

  38. J.G. Hao et al., Structure evolution and electrostrictive properties in (Bi0.5Na0.5)(0.94)Ba006TiO3–M2OT (M = Nb, Ta, Sb) lead-free piezoceramics. J. Eur. Ceram. Soc. 36(16), 4003–4014 (2016)

    Google Scholar 

  39. L. Luisman, A. Feteira, K. Reichmann, Weak-relaxor behaviour in Bi/Yb-doped KNbO3 ceramics. Appl. Phys. Lett. 99(19), 192901 (2011)

    ADS  Google Scholar 

  40. J. Shi et al., Giant strain response and structure evolution in (Bi0.5Na05)(0.945–x)(Bi0.2Sr0.7 square(0.1))(x)Ba0.055TiO3 ceramics. J. Eur. Ceram. Soc. 34(15), 3675–3683 (2014)

    Google Scholar 

  41. A. Slodczyk, P. Colomban, M. Pham-Thi, Role of the TiO6 octahedra on the ferroelectric and piezoelectric behaviour of the poled PbMg1/3Nb2/3O3–xPbTiO3 (PMN–PT) single crystal and textured ceramic. J. Phys. Chem. Solids 69(10), 2503–2513 (2008)

    ADS  Google Scholar 

  42. E. Aksel et al., Processing of manganese-doped [Bi0.5Na0.5]TiO3 ferroelectrics: reduction and oxidation reactions during calcination and sintering. J. Am. Ceram. Soc. 94(5), 1363–1367 (2011)

    Google Scholar 

  43. W. Sakamoto et al., Influence of volatile element composition and Mn doping on the electrical properties of lead-free piezoelectric (Bi0.5Na0.5)TiO3 thin films. Sens. Actuators A Phys. 200(Complete), 60–67 (2013)

    Google Scholar 

  44. C. Ma, X. Tan, Phase diagram of unpoled lead-free (1–x)(Bi1/2Na1/2)TiO3-xBaTiO(3) ceramics. Solid State Commun. 150(33–34), 1497–1500 (2010)

    ADS  Google Scholar 

  45. Y. Guo et al., Composition-induced antiferroelectric phase and giant strain in lead-free (Na-y, Bi-z)Ti1-xO3(1–x)-xBaTiO(3) ceramics. Phys. Rev. B 83(5), 054118 (2011)

    ADS  Google Scholar 

  46. L. Pardo et al., Field-induced phase transition and relaxor character in submicrometer-structured lead-free (Bi0.5Na0.5)(0.94)Ba0.06TiO3 piezoceramics at the morphotropic phase boundary. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(9), 1893–1904 (2011)

    Google Scholar 

  47. E. Sapper et al., Influence of electric fields on the depolarization temperature of Mn-doped (1–x)Bi1/2Na1/2TiO3xBaTiO3. J. Appl. Phys. 111(1), 014105 (2012)

    ADS  Google Scholar 

  48. C. Lei, Z.G. Ye, Re-entrant-like relaxor behaviour in the new 0.99BaTiO(3)-0.01AgNbO(3) solid solution. J. Phys.-Condens. Matter 20(23), 4 (2008)

    Google Scholar 

  49. H.Y. Guo, C. Lei, Z.G. Ye, Re-entrant type relaxor behavior in (1–x)BaTiO3xBiScO(3) solid solution. Appl. Phys. Lett. 92(17), 3 (2008)

    Google Scholar 

  50. X.P. Jiang et al., Dielectric properties of Mn-doped (Na0.8K0.2)(0.5)Bi0.5TiO3 ceramics. Mater. Lett. 60(15), 1786–1790 (2006)

    Google Scholar 

  51. S.N. Tripathy et al., Dielectric and Raman spectroscopic studies of Na0.5Bi0.5TiO3–BaSnO3 ferroelectric system. J. Am. Ceram. Soc. 97(6), 1846–1854 (2014)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Guangxi (Grant Nos. AA138162, and AA294014), and High Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuyun Lei or Laijun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Ma, X., Ren, S. et al. Tunable phase transition in (Bi0.5Na0.5)0.94Ba0.06TiO3 by B-site cations. Appl. Phys. A 126, 269 (2020). https://doi.org/10.1007/s00339-020-3448-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3448-1

Keywords

Navigation