Skip to main content
Log in

Synthesis, crystal structure and optical properties of Anderson-type heteropolyanion with cobalt cations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A sample inorganic A-type Anderson polyoxometalate (POM) (TeMo6) compound formulated as [Co(H2O)6]3[TeMo6O24] is synthesized in aqueous solution by slow evaporation technique. Single-crystal X-ray diffraction analysis reveals that the obtained compound crystallizes in the centrosymmetric hexagonal space group (R-3c) with a formula unit made up of one [TeMo6O24]6− A-type Anderson anion and three [Co(H2O)3]2+ cations. The molecular Hirshfeld surface indicates that the crystal packing is stabilized by H-bonds interactions to generate 3D supramolecular frameworks. Furthermore, some optical properties such as bandgap energy, refractive index, dielectric constant and optical conductivity of the sample are investigated. The large value of refractive index known in the visible region of electromagnetic spectrum (n = 3.5 at 1.8 eV) reveals that this sample can become a promising candidate for visible optical communication devices. The emission fluorescent spectrum in the solid state at room temperature is measured and the decay lifetime curves are obtained by monitoring the ligand-to-metal charge transfer transition (LMCT). The studies of the colorimetric properties of the sample reveal that the color coordinates (x = 0.33667; y = 0.25564) are located in the region of National Television System Committee (NTSC) in the CIE chromaticity chart and the calculated correlated color temperature value (CCT ~ 5085 K) indicates that the optimized compound could be applied as a cool light emission diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. JJP Berzelius 1826 Ann. Phys. Chem. 6 369 380

    Article  ADS  Google Scholar 

  2. A Blazevic A Rompel 2016 Coord. Chem. Rev. 307 42 64

    Article  Google Scholar 

  3. A Proust R Thouvenot P Gouzerh 2008 Chem. Commun. 16 1837 1852

    Article  Google Scholar 

  4. DE Katsoulis 1998 Chem. Rev. 98 359 388

    Article  Google Scholar 

  5. IV Kozhenikov 1998 Chem. Rev. 98 171 198

    Article  Google Scholar 

  6. AJ Gaunt I May M Helliwell SJ Richardson 2002 Am. Chem. Soc. 124 13350 13351

    Article  Google Scholar 

  7. V Shivaiah M Nagaraju SK Das 2003 Inorg. Chem. 42 6604 6606

    Article  Google Scholar 

  8. HY An YG Li EB Wang DR Xiao CY Sun L Xu 2005 Inorg. Chem. 44 6062 6070

    Article  Google Scholar 

  9. HY An DR Xiao EB Wang YG Li XL Wang L Xu 2005 Eur. J. Inorg. Chem. 2005 854 859

    Article  Google Scholar 

  10. JW Zhang YC Huang J Zhang S She J Hao YQ Wei 2014 Dalton Trans. 43 2722 2725

    Article  Google Scholar 

  11. NI Gumerova A Blazevic TC Fraile A Roller G Giester A Rompel 2018 Acta Cryst. C74 1378 1383

    Google Scholar 

  12. SK Suram PF Newhouse JM Gregoire ACS Comb 2016 Sci. 18 673 681

    Google Scholar 

  13. H Yadav N Sinha S Goel B Singh I Bdikin A Saini K Gopalaiahd B Kumara 2017 Acta Cryst. B 73 805 819

    Article  Google Scholar 

  14. GM Sheldrick 2017 Acta Cryst. A 64 112 122

    Article  Google Scholar 

  15. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M. A. Spackman, (2013). Crystal Explorer 3.1, University of Western Australia, Crawley, Western, Australia, pp. 2005–2013.

  16. ID Brown D Altermatt 1985 Acta Cryst. B 41 244 247

    Article  Google Scholar 

  17. X Wang J Sun H Lin Z Chang A Tian G Liu X Wang 2016 Dalton Trans. 45 2709 2719

    Article  Google Scholar 

  18. AL Rohl M Moret W Kaminsky K Claborn JJ McKinnon B Kahr 2008 Cryst. Growth Des. 8 4517 4525

    Article  Google Scholar 

  19. N Tyagi N Sinha H Yadava B Kumara 2016 Acta Cryst. B 72 593 601

    Article  Google Scholar 

  20. C. Jelsch, K. Ejsmont. L. Hudera, IUCrJ. 1 (2014) 119–128.

    Article  Google Scholar 

  21. R Khoshnavazi L Kaviani FM Zonoz 2009 Inorg. Chim. Acta. 362 1223 1228

    Article  Google Scholar 

  22. SC Manna S Mistri E Zangrando 2014 Inorg. Chim. Acta. 413 166 173

    Article  Google Scholar 

  23. S.Y. El-Zaiat, Optik. 124, 157–161 (2013)

    Article  ADS  Google Scholar 

  24. G Anbazhagan PS Joseph G Shankar J Asian 2012 J. Technol. 11 36 39

    Google Scholar 

  25. L Wu H Ma Z Han C Li 2009 Solid State Sci. 11 43 48

    Article  ADS  Google Scholar 

  26. RV Deun D Ndagsi J Liu IV Driessche KV Hecke AM Kaczmarek 2015 Dalton Trans. 44 15022 15030

    Article  Google Scholar 

  27. S Dutta S Som SK Sharma 2013 Dalton Trans. 42 9654 9661

    Article  Google Scholar 

  28. HR Sewall 1948 J. Opt. Soc. Am. 48 985 995

    Google Scholar 

  29. CS McCamy 1992 Color Res. Appl. 17 142 144

    Article  Google Scholar 

  30. M Soares JM Soares AJ Fernandes L Rino FM Costa T Monteiro 2011 J. Mater. Chem. 21 15262 15265

    Article  Google Scholar 

  31. X Guo 2004 K. W. Houser Lighting Res. Technol. 36 183 197

    Article  Google Scholar 

  32. JH Andres RL Lee 1999 J. Romero Appl. Optics. 38 5703 5709

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank for financial Professor Dominique Luneau of Lyon University (France) for the data collection facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Ammari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammari, Y., Abid, S. & Naifer, K.H. Synthesis, crystal structure and optical properties of Anderson-type heteropolyanion with cobalt cations. Appl. Phys. A 126, 101 (2020). https://doi.org/10.1007/s00339-020-3280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3280-7

Keywords

Navigation