Skip to main content
Log in

Statistical analysis of current–voltage characteristics in Au/Ta2O5/n-GaN Schottky barrier heterojunction using different methods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on the influence of incorporation of Ta2O5 thin film at the interface of Au/GaN by means of e-beam evaporation technique. The fabricated Au/Ta2O5/n-GaN MIS junctions have been analysed using I–V measurements and were extended to a voltage range of ± 20 V. The Schottky diode parameters for instance Φbo, n and RS values are evaluated using I–V curves at room temperature. The statistical distribution analysis provides the mean ‘Φbo’ value of 0.85 eV with deviation of 0.00181 eV and mean value from ‘n’ is 1.36 with a normal deviation of 0.00562. Two important electrical parameters such as RS and Rsh values are also extracted from I–V characteristics. Furthermore, Cheung, Norde, modified Norde, Hernandez and Chattopadhyay methods are used to evaluate the Schottky barrier parameters from I–V data. The comparison is made between the extracted electrical parameters such as n, Φbo and RS from I–V characteristics of Au/Ta2O5/n-GaN MIS junctions and are in well agreement with each other. Under forward-bias, the fabricated Au/Ta2O5/n-GaN MIS junction conduction mechanisms such as ohmic and SCL were found to be dominant at lower and higher voltage regimes, respectively. By fitting reverse-bias region of I–V curves, PF conduction mechanism was found to be dominant at the interfaces of Au/Ta2O5/n-GaN. In conclusion, the obtained superior rectification ratio of 6.06 × 104 and higher SBH of 0.87 eV was ascribed to the purposefully deposited undoped GaN buffer layer between epitaxial GaN and sapphire substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D.S. Lee, Z. Liu, T. Palacios, GaN high electron mobility transistors for sub-millimetre wave applications. Jpn. J. Appl. Phys. 53, 100212 (2014)

    Article  Google Scholar 

  2. S.J. Pearton, C. Kuo, GaN and related materials for device applications. MRS Bull. 22, 17 (1997)

    Article  Google Scholar 

  3. M.L. Gardner, Master’s Thesis (Naval Postgraduate School, Monterey, USA, 2016).

    Google Scholar 

  4. Y. Chen, Z. Zhang, H. Jiang, Z. Li, G. Miao, H. Song, H. Liqin, T. Guo, Realization of an efficient electron source by ultraviolet-light-assisted field emission from a one-dimensional ZnO nanorods/n-GaN heterostructure photoconductive detector. Nanoscale. 11, 1351 (2019)

    Article  Google Scholar 

  5. Q. Zheng, C. Li, A. Rai, J.H. Leach, D.A. Broido, D.G. Cahill, Thermal conductivity of GaN, GaN, and SiC from 150 K to 850 K. Phys. Rev. Mater. 3, 014601 (2019)

    Article  Google Scholar 

  6. T.I. Kim, Y.H. Jung, J. Song, D. Kim, Y. Li, H. Kim, S. Song, J.J. Wierer, H. Pao, Y. Huang, J.A. Rogers, High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small. 8, 1643 (2012)

    Article  Google Scholar 

  7. A.C. Schmitz, A.T. Ping, M.A. Khan, Q. Chen, J.W. Yang, I. Adesida, Schottky barrier properties of various metals on n-type GaN. Semicond. Sci. Technol. 11, 1464 (1996)

    Article  ADS  Google Scholar 

  8. P.T. Blanchard, K.A. Bertness, T.E. Harvery, L.M. Mansfield, A.W. Sanders, N.A. Sanford, MESFETs made from individual GaN nanowires. IEEE Trans. Nanotechnol. 7, 760 (2008)

    Article  ADS  Google Scholar 

  9. M.A. Khan, M.S. Shur, J.N. Kuznia, Q. Chen, J. Bourn, W. Schaff, Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C. Appl. Phys. Lett. 66, 1083 (1995)

    Article  ADS  Google Scholar 

  10. S.J. Pearton, F. Ren, A.P. Zhang, G. Dang, X.A. Cao, K.P. Lee, H. Cho, B.P. Gila, J.W. Johnson, C. Monier, C.R. Abernathy, J. Han, A.G. Baca, J.-I. Chyi, C.-M. Lee, T.E. Nee, C.C. Chuo, S.N.G. Chu, GaN electronics for high power, high temperature applications. Mater. Sci. Eng. B 82, 227 (2001)

    Article  Google Scholar 

  11. N. Lakhdar, F. Djeffal, New optimized dual-material (DM) gate design to improve the submicron GaN-MESFETs reliability in subthreshold regime. Microelectron. Reliab. 52, 958 (2012)

    Article  Google Scholar 

  12. D. Voiry, H. Yamaguchi, J.W. Li, R. Silva, D.C.B. Alves, T. Fujita, M.W. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chowalla, Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850 (2013)

    Article  ADS  Google Scholar 

  13. H.I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J.R. Long, C.J. Chang, A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335, 698 (2012)

    Article  ADS  Google Scholar 

  14. M.Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin, H.-L. Tang, M.-L. Tsai, C.-W. Chu, K.-H. Wei, J.-H. He, W.H. Chang, K. Suenaga, L.J. Li, Epitaxial growth of a monolayer WSe2-MoS2 lateral P-N junction with an atomically sharp interface. Science 349, 524 (2015)

    Article  ADS  Google Scholar 

  15. X. Xu, Z.Y. Fan, S.J. Ding, D.M. Yu, Y.P. Du, Fabrication of MoS2 nanosheet @TiO2 nanotube hybrid nanostructures for lithium storage. Nanoscale. 6, 5245 (2014)

    Article  ADS  Google Scholar 

  16. S.P. Murarka, Multilevel interconnections for ULSI and GSI era. Mater. Sci. Eng. R 19, 87 (1997)

    Article  Google Scholar 

  17. M.H. Tsai, S.C. Sun, C.E. Tsai, S.H. Chaung, H.T. Chiu, Comparison of the diffusion barrier properties of chemical-vapor-deposited TaN and sputtered TaN between Cu and Si. J. Appl. Phys. 79, 6932 (1996)

    Article  ADS  Google Scholar 

  18. M. Takeyama, A. Noya, T. Sase, A. Ohta, Properties of TaNx films as diffusion barriers in the thermally stable Cu/Si contact systems. J. Vac. Sci. Technol. B 14, 674 (1996)

    Article  Google Scholar 

  19. M.T. Wang, Y.C. Lin, M.C. Chen, Barrier properties of very thin Ta and TaN layers against copper diffusion. J. Electrochem. Soc. 145, 2538 (1998)

    Article  ADS  Google Scholar 

  20. T. Laurila, K. Zeng, J.K. Kivilahti, J. Molarius, T. Riekkinen, I. Suni, Tantalum carbide and nitride diffusion barriers for Cu metallisation. Microelectron. Eng. 60, 71 (2002)

    Article  Google Scholar 

  21. A.F. Jankowaski, R.M. Bionta, P.C. Gabriele, Internal stress minimization in the fabrication of transmissive multilayer x-ray optics. J. Vac. Sci. Technol. A 7, 210 (1989)

    Article  ADS  Google Scholar 

  22. K. Holloway, P.M. Fryer, Tantalum as a diffusion barrier between copper and silicon. Appl. Phys. Lett. 57, 1736 (1990)

    Article  ADS  Google Scholar 

  23. M. Oda, A. Ozawa, S. Ohki, H. Yoshihara, Ta film properties for X-ray mask absorbers. Jpn. J. Appl. Phys. 29, 2616 (1990)

    Article  ADS  Google Scholar 

  24. J.-H. Hur, M.-J. Lee, C.B. Lee, Y.-B. Kim, C.-J. Kim, Modeling for bipolar resistive memory switching in transition-metal oxides. Phy. Rev. B 82, 155321 (2010)

    Article  ADS  Google Scholar 

  25. M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5–x)/TaO(2–x) bilayer structures. Nat. Mater. 10, 625 (2011)

    Article  ADS  Google Scholar 

  26. J.-H. Hur, K.M. Kim, M. Chang, S.R. Lee, D. Lee, C.B. Lee, M.-J. Lee, Y.-B. Kim, C.-J. Kim, U.-I. Chung, Modeling for multilevel switching in oxide-based bipolar resistive memory. Nanotechnology. 23, 225702 (2012)

    Article  ADS  Google Scholar 

  27. J. Yu, G. Chen, C.X. Li, M. Shafiei, J. Ou, J. du Plessis, K. Kalantar-zadeh, P.T. Lai, W. Wlodarski, Hydrogen gas sensing properties of Pt/Ta2O5 Schottky diodes based on Si and SiC substrates. Procedia Eng. 5, 147 (2010)

    Article  Google Scholar 

  28. S.-J. Joo, J.H. Choi, S.J. Kim, S.-C. Kim, Pd/Ta2O5/SiC Schottky-diode hydrogen sensors formed by using rapid thermal oxidation of Ta thin films. J. Korean Phys. Soc. 63, 1794 (2013)

    Article  ADS  Google Scholar 

  29. B.P. Lakshmi, V.R. Reddy, V. Janardhanam, M.S.P. Reddy, J.-H. Lee, Effect of annealing temperature on the electrical properties of Au/Ta2O5/n-GaN metal-insulator-semiconductor (MIS) structure. Appl. Phys. A. 113, 713 (2013)

    Article  ADS  Google Scholar 

  30. N. Alimardani, J.F. Conley Jr., Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunnelling. J. Vac. Sci. Technol. A 105, 082902 (2014)

    Google Scholar 

  31. N.N.K. Reddy, H.S. Akkera, M.C. Sekhar, S. Uthanna, Influence of Ta2O5 interfacial oxide layer thickness on electronic parameters of Al/Ta2O5/p-Si/Al. Silicon. 11, 159 (2019)

    Article  Google Scholar 

  32. S. Kumar, M.V. Kumar, S. Krishnaveni, Fabrication and analysis of the current transport mechanism of Ni/n-GaN Schottky barrier diodes through different models. Semicond. 54, 169 (2020)

    Article  ADS  Google Scholar 

  33. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon, Oxford, 1988).

    Google Scholar 

  34. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981).

    Google Scholar 

  35. N.N.K. Reddy, V.R. Reddy, C.-J. Choi, Electrical characteristics and interfacial reactions of rapidly annealed Pt/Ru Schottky contacts on n-type GaN. Phys. Status Solidi A 208, 1670 (2011)

    Article  ADS  Google Scholar 

  36. G. Zhang, Y. Xue, P. Guo, H. Wang, Z. Ma, Optical properties and microstructure of Ta2O5 thin films prepared by ion assisted electron beam evaporation. J. Wuhan Univ. Technol. Mat. Sci. Edit. 23, 632 (2008)

    Article  Google Scholar 

  37. R. Shakoury, S. Rezaee, F. Mwema, C. Luna, K. Ghosh, S. Jurecka, Ş Ţalu, A. Arman, A.G. Korpi, Multifractal and optical bandgap characterization of Ta2O5 thin films deposited by electron gun method. Opt. Quant. Electron. 52, 95 (2020)

    Article  Google Scholar 

  38. N.N.K. Reddy, S. Godavarthi, V.K. Kummara, K.M. Kumar, D. Saha, H.S. Akkera, G.K. Guntupalli, S. Kumar, S.V.P. Vattikuti, Structural, optical and photoresponse characteristics of metal-insulator-semiconductor (MIS) type Au/Ni/CeO2/GaN Schottky barrier ultraviolet photodetector. Mater. Sci. Semicond. Process. 117, 105190 (2020)

    Article  Google Scholar 

  39. S. Kumar, M.V. Kumar, S. Krishnaveni, Fabrication and analysis of the current transport mechanism of Ni/n-GaN Schottky barrier diodes through different models. Semiconductors. 54, 169 (2020)

    Article  ADS  Google Scholar 

  40. M.C. Sekhar, N.N.K. Reddy, B.P. Reddy, B.P. Prakash, H.S. Akkera, S. Uthanna, S.H. Park, Influence of substrate bias voltage on crystallographic structure, optical and electronic properties of Al/(Ta2O5)0.85(TiO2)0.15/p-Si MIS schottky barrier diodes fabricated by dc magnetron sputtering. Mater. Sci. Semicond. Process. 76, 80 (2018)

    Article  Google Scholar 

  41. O. Akhavan, Silver nanocube crystals on titanium nitride buffer layer. J. Phys. D: Appl. Phys. 42, 105305 (2009)

    Article  ADS  Google Scholar 

  42. L. Dobos, B. Pecz, L. Toth, Z.J. Horvath, Z.E. Horvath, E. Horvath, A. Toth, B. Beaumont, Z. Bougrioua, Al and Ti/Al contacts on n-GaN. Vacuum 84, 228 (2010)

    Article  ADS  Google Scholar 

  43. M. Diserens, J. Patscheider, F. Levy, Improving the properties of titanium nitride by incorporation of silicon. Surf. Coat. Technol. 108–109, 241 (1998)

    Article  Google Scholar 

  44. J.M. Wang, W.G. Liu, T. Mei, The effect of thermal treatment on the electrical properties of titanium nitride thin films by filtered arc plasma method. Ceram. Int. 30, 1921 (2004)

    Article  Google Scholar 

  45. N. Chaturvedi, U. Zeimer, J. Würfl, G. Tränkle, Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors. Semicond. Sci. Technol. 21, 175 (2006)

    Article  ADS  Google Scholar 

  46. M.E. Lin, C. Ma, F.Y. Huang, Z.F. Fan, L.H. Allen, H. Morkoc, Low resistance ohmic contacts on wide band-gap GaN. Appl. Phys. Lett. 64, 1003 (1994)

    Article  ADS  Google Scholar 

  47. S. Kapoor, R. Laishram, H. Saini, S. Mahajan, R.K. Chaubey, D.S. Rawal, S. Vinayak, Effect of argon plasma treatment on ohmic contact formation in AlGaN/GaN HEMTs. Springer Proc. Phys. 215, 191 (2019)

    Article  Google Scholar 

  48. R.T. Tung, Electron transport at metal semiconductor interfaces: general theory. Phys. Rev. B 45, 13509 (1992)

    Article  ADS  Google Scholar 

  49. A.A.M. Farag, Influence of temperature and illumination on the characteristics of nanocrystalline Ga0.29 Al0.71As based heterojunction prepared by MOCVD. J. Alloys Compd. 509, 8056 (2011)

    Article  Google Scholar 

  50. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85 (1986)

    Article  ADS  Google Scholar 

  51. H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052 (1979)

    Article  ADS  Google Scholar 

  52. K.E. Bohlin, Generalized Norde plot including determination of the ideality factor. J. Appl. Phys. 60, 1223 (1986)

    Article  ADS  Google Scholar 

  53. M.P. Hernandez, C.F. Alonso, J.L. Pena, Barrier height determination in homogeneous nonideal Schottky contacts. J. Phys. D: Appl. Phys. 34, 1157 (2001)

    Article  ADS  Google Scholar 

  54. P. Chatopadhyay, A new technique for the determination of barrier height of Schottky barrier diodes. Solid-State Electron. 38, 739 (1995)

    Article  ADS  Google Scholar 

  55. J. Yu, G. Chen, C.X. Li, M. Shafiei, J.Z. Ou, J. du Plessis, K. Kalantar-zadeh, P.T. Lai, W. Wlodarski, Hydrogen gas sensing properties of Pt/Ta2O5 Schottky diodes based on Si and SiC substrates. Sens. Actuators A 172, 9 (2011)

    Article  Google Scholar 

  56. S. Kumar, M.V. Kumar, S. Krishnaveni, Fabrication and analysis of the current transport mechanism of Ni/n-GaN Schottky barrier diodes through different models. Semicond 54, 169 (2020)

    Article  ADS  Google Scholar 

  57. K. Ashish, V. Seema, R. Singh, Investigation of current-voltage characteristics of Ni/GaN schottky barrier diodes for potential HEMT applications. J. Nano-Electron. Phys. 3, 671 (2011)

    Google Scholar 

  58. Y.S. Ocak, M. Kulakci, T. Kılıcoglu, R. Turan, K. Akkılıc, Current-voltage and capacitance-voltage characteristics of a Sn/methylene blue/p-Si Schottky diode. Synth. Met. 159, 1603 (2009)

    Article  Google Scholar 

  59. A.A. Kumar, V.R. Reddy, V. Janardhanam, H.D. Yang, H.-J. Yun, C.J. Choi, Electrical properties of Pt/n-type Ge Schottky contact with PEDOT:PSS interlayer. J. Alloys Compd. 549, 18 (2013)

    Article  Google Scholar 

  60. V.R. Reddy, V. Manjunath, V. Janardhanam, Y.-H. Kil, C.-J. Choi, Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution-processed high-k BaTiO3 interlayer. J. Electron. Mater. 43, 3499 (2014)

    Article  ADS  Google Scholar 

  61. R.M. Fleming, D.V. Lang, C.D.W. Jones, M.L. Steigerwald, D.W. Murphy, G.B. Alers, Y.-H. Wong, R.B.V. Dover, J.R. Kwo, A.M. Sergent, Defect dominated charge transport in amorphous Ta2O5 thin films. J. Appl. Phys. 88, 850 (2000)

    Article  ADS  Google Scholar 

  62. A. Shetty, B. Roul, S. Mukundan, L. Mohan, G. Chandan, K.J. Vinoy, S.B. Krupanidhi, Temperature dependent electrical characterisation of Pt/HfO2/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes. AIP Adv. 5, 097103 (2015)

    Article  ADS  Google Scholar 

  63. T.T.A. Tuan, D.H. Kuo, C.C. Li, W.C. Yen, Schottky barrier characteristics of Pt contacts to all sputtering-made n-type GaN and MOS diodes. J. Mater. Sci: Mater. Electron. 25, 3264 (2014)

    Google Scholar 

  64. K. Akkılıc, Y.S. Ocak, T. Kılıcoglu, S. Ilhan, H. Temel, Calculation of current-voltage characteristics of a Cu (II) complex/n-Si/AuSb Schottky diode. Curr. Appl. Phys. 10, 337 (2010)

    Article  ADS  Google Scholar 

  65. S. Karatas, N. Yildirim, A. Turut, Electrical properties and interface state energy distributions of Cr/n-Si Schottky barrier diode. Superlattices Microstruct. 64, 483 (2013)

    Article  ADS  Google Scholar 

  66. I. Rahim, M. Shah, M. Iqbal, F. Wahab, A. Khan, S.H. Khan, Fabrication and electrical characterizations of graphene nanocomposite thin film based heterojunction diode. Phys. B 524, 97 (2017)

    Article  ADS  Google Scholar 

  67. R. Padma, G. Lee, J.S. Kang, S.C. Jun, Structural, chemical, and electrical parameters of Au/MoS2/n-GaAs metal/2D/3D hybrid heterojunction. J. Colloid Interface Sci. 550, 48 (2019)

    Article  ADS  Google Scholar 

  68. A. Tataroglu, Comparative study of the electrical properties of Au/n-Si (MS) and Au/Si3N4/n-Si (MIS) Schottky diodes. Chin. Phys B. 22, 068402 (2013)

    Article  Google Scholar 

  69. O. Mustafa, Y. Fahrettin, Analysis of interface states and series resistance of Ag/SiO2/n-Si MIS Schottky diode using current-voltage and impedance spectroscopy methods. Microelectron Eng 85, 646 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The author Dr. Nallabala Nanda Kumar Reddy thankfully acknowledge the financial support received from the Department of Science and Technology (DST), Science and Engineering Research Board, Government of India, Major Research Project No. ECR/2017/002868 and DST-FIST Program-2015 (SR/FST/College-263). Dr. C. Yuvaraj acknowledges the financial support received from TEQIP-II seed grant 2019-20. Dr. K. Venkata Krishnaiah is obliged to SERB-DST, New Delhi for sanctioning a major research project No. EMR/2017/000009. Further, all the authors thankful to the technical support received from Mr. G. Manjunatha, MITS, Madanapalle, A.P and Mr. Kewal Krishan, Department of Electronic Science, Kurukshetra University, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nanda Kumar Reddy Nallabala or Vasudeva Reddy Minnam Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunath, V., Nallabala, N.K., Yuvaraj, C. et al. Statistical analysis of current–voltage characteristics in Au/Ta2O5/n-GaN Schottky barrier heterojunction using different methods. Appl. Phys. A 127, 46 (2021). https://doi.org/10.1007/s00339-020-04173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04173-2

Keywords

Navigation