Skip to main content
Log in

Adsorbate-induced enhancement of the spectral response in graphene/silicon-based Schottky barrier photodetectors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The impact of atmospheric adsorbates on the spectral response and response speed of p-type graphene/n-type Silicon (p-Gr/n-Si) based Schottky barrier photodetectors are investigated. Wavelength resolved photocurrent and transient photocurrent spectroscopy measurements conducted under high-vacuum conditions revealed that the atmospheric adsorbates such as O2 and H2O stuck on graphene electrode lead to hole doping in graphene and therefore shift its Fermi level towards higher energy states below its Dirac point. Such a shift in graphene’s Fermi level due to adsorbates increases the zero-bias Schottky barrier height of the p-Gr/n-Si heterojunction from 0.71 to 0.78 eV. Adsorbate induced increment in the barrier height promotes the separation of photo-generated charge carriers at the depletion region and leads to an improvement in the maximum spectral response (e.g., from 0.39 to 0.46 AW−1) and response speed of the p-Gr/n-Si photodetector in the near-infrared region. The experimentally obtained results are expected to give an insight into the adsorbate related variations in the rectification and photo-response characters of the heterojunctions of graphene and other 2D materials with different semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)

    Article  ADS  Google Scholar 

  2. S. Bae, S.J. Kim, D. Shin, J.H. Ahn, B.H. Hong, Towards industrial applications of graphene electrodes. Phys. Scr. 2012, 014024 (2012)

    Article  Google Scholar 

  3. F. Vaianella, G. Rosolen, B. Maes, Graphene as a transparent electrode for amorphous silicon-based solar cells. J. Appl. Phys. 117, 243102 (2015)

    Article  ADS  Google Scholar 

  4. K. Patel, P.K. Tyagi, Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells. AIP Adv. 5, 077165 (2015)

    Article  ADS  Google Scholar 

  5. X. An, F. Liu, Y.J. Jung, S. Kar, Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 13, 909–916 (2013)

    Article  ADS  Google Scholar 

  6. S.B. Kalkan, H. Aydın, D. Özkendir, C. Çelebi, The effect of adsorbates on the electrical stability of graphene studied by transient photocurrent spectroscopy. Appl. Phys. Lett. 112, 013103 (2018)

    Article  ADS  Google Scholar 

  7. Y. Yang, K. Brenner, R. Murali, The influence of atmosphere on electrical transport in graphene. Carbon 50, 1727–1733 (2012)

    Article  Google Scholar 

  8. B.S. Kandemir, D. Akay, Tuning the pseudo-Zeeman splitting in graphene cones by magnetic field. J. Magn. Magn. Mater. 384, 101–105 (2015)

    Article  ADS  Google Scholar 

  9. D. Akay, The effect of tilted magnetic field in graphene cone. Procedia Soc. Behav. Sci. 195, 2913–2920 (2015)

    Article  Google Scholar 

  10. C.C. Chen, M. Aykol, C.C. Chang, A.F.J. Levi, S.B. Cronin, Graphene-silicon Schottky diodes. Nano Lett. 11, 1863–1867 (2011)

    Article  ADS  Google Scholar 

  11. S. Tongay, M. Lemaitre, X. Miao, B. Gila, B.R. Appleton, A.F. Hebard, Rectification at graphene-semiconductor interfaces: zero-gap semiconductor-based diodes. Phys. Rev. X 2, 011002 (2012)

    Google Scholar 

  12. D. Tomer, S. Rajput, L.J. Hudy, C.H. Li, L. Li, Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions. Nanotechnology 26, 215702 (2015)

    Article  ADS  Google Scholar 

  13. C. Yim, N. McEvoy, G.S. Duesberg, Characterization of graphene-silicon Schottky barrier diodes using impedance spectroscopy. Appl. Phys. Lett. 103, 193106 (2013)

    Article  ADS  Google Scholar 

  14. D. Sinha, J.U. Lee, Ideal graphene/silicon schottky junction diodes. Nano Lett. 14, 4660–4664 (2014)

    Article  ADS  Google Scholar 

  15. Riazimehr, S., Schneider, D., Yim, C., Kataria, S., Passi, V., Bablich, A., Duesberg, G.S., Lemme, M.C.: Spectral sensitivity of a graphene/silicon pn-junction photodetector, in: EUROSOI-ULIS 2015–2015 joint ınternational EUROSOI workshop and ınternational conference on ultimate ıntegration on silicon, 7063773 (2015)

  16. H. Selvi, N. Unsuree, E. Whittaker, M.P. Halsall, E.W. Hill, A. Thomas, P. Parkinson, T.J. Echtermeyer, Towards substrate engineering of graphene-silicon Schottky diode photodetectors. Nanoscale 10, 3399–3409 (2018)

    Article  Google Scholar 

  17. S. Riazimehr, S. Kataria, R. Bornemann, P.H. Bolívar, F.J.G. Ruiz, O. Engström, A. Godoy, M.C. Lemme, High photocurrent in gated graphene-silicon hybrid photodiodes. ACS Photonics 4, 1506–1514 (2017)

    Article  Google Scholar 

  18. E. Efil, N. Kaymak, E. Seven, E.O. Orhan, O. Bayram, S.B. Ocak, A. Tataroglu, Current-voltage analyses of Graphene-based structure onto Al2O3/p-Si using various method. Vacuum 181, 109654 (2020)

    Article  ADS  Google Scholar 

  19. N. Kaymak, O. Bayram, A. Tataroğlu, S. Bilge Ocak, E. Oz Orhan, Electrical properties of Graphene/Silicon structure with Al2O3 interlayer. J. Mater. Sci. Mater. Electron. 31, 9719–9725 (2020)

    Article  Google Scholar 

  20. X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, A.F. Hebard, High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745–2750 (2012)

    Article  ADS  Google Scholar 

  21. F. Liu, S. Kar, Quantum carrier reinvestment-induced ultrahigh and broadband photocurrent responses in graphene-silicon junctions. ACS Nano 8, 10270–10279 (2014)

    Article  Google Scholar 

  22. H. Yang, J. Heo, S. Park, H.J. Song, D.H. Seo, K.E. Byun, P. Kim, I.K. Yoo, H.J. Chung, K. Kim, Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science (80-) 336, 1140–1143 (2012)

    Article  ADS  Google Scholar 

  23. X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, Y. Fang, High detectivity graphene-silicon heterojunction photodetector. Small 12, 595–601 (2016)

    Article  Google Scholar 

  24. S. Riazimehr, S. Kataria, J.M. Gonzalez-Medina, S. Wagner, M. Shaygan, S. Suckow, F.G. Ruiz, O. Engström, A. Godoy, M.C. Lemme, High responsivity and quantum efficiency of graphene/silicon photodiodes achieved by interdigitating schottky and gated regions. ACS Photonics 6, 107–115 (2019)

    Article  Google Scholar 

  25. S. Parui, R. Ruiter, P.J. Zomer, M. Wojtaszek, B.J. Van Wees, T. Banerjee, Temperature dependent transport characteristics of graphene/n-Si diodes. J. Appl. Phys. 116, 244505 (2014)

    Article  ADS  Google Scholar 

  26. S. Riazimehr, A. Bablich, D. Schneider, S. Kataria, V. Passi, C. Yim, G.S. Duesberg, M.C. Lemme, Spectral sensitivity of graphene/silicon heterojunction photodetectors. Solid. State. Electron. 115, 207–212 (2016)

    Article  ADS  Google Scholar 

  27. X. Wan, Y. Xu, H. Guo, K. Shehzad, A. Ali, Y. Liu, J. Yang, D. Dai, C.-T. Lin, L. Liu, H.-C. Cheng, F. Wang, X. Wang, H. Lu, W. Hu, X. Pi, Y. Dan, J. Luo, T. Hasan, X. Duan, X. Li, J. Xu, D. Yang, T. Ren, B. Yu, A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon? . NPJ 2D Mater Appl. 1, 4 (2017)

    Article  Google Scholar 

  28. J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, D. Wei, High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes. Nanoscale 9, 6020–6025 (2017)

    Article  Google Scholar 

  29. A. Di Bartolomeo, G. Luongo, F. Giubileo, N. Funicello, G. Niu, T. Schroeder, M. Lisker, G. Lupina, Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect. 2D Mater. 4, 025075 (2017)

    Article  Google Scholar 

  30. H. Aydin, S.B. Kalkan, C. Varlikli, C. Celebi, P3HT-graphene bilayer electrode for Schottky junction photodetectors. Nanotechnology 29, 145502 (2018)

    Article  ADS  Google Scholar 

  31. Z. Lin, X. Ye, J. Han, Q. Chen, P. Fan, H. Zhang, D. Xie, H. Zhu, M. Zhong, Precise control of the number of layers of graphene by picosecond laser thinning. Sci. Rep. 5, 11662 (2015)

    Article  ADS  Google Scholar 

  32. J.W. Suk, W.H. Lee, J. Lee, H. Chou, R.D. Piner, Y. Hao, D. Akinwande, R.S. Ruoff, Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett. 13, 1462–1467 (2013)

    Article  ADS  Google Scholar 

  33. C. Melios, C.E. Giusca, V. Panchal, O. Kazakova, Water on graphene: review of recent progress. 2D Mater. 5, 022001 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Alper Yanılmaz and Gülçin Dönmez for their help on the sample preparation procedures and Sparks Electronics Ltd., Turkey, for providing us with the stainless steel shadow masks that were used in the sample fabrication processes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Çelebi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahan, N., Fidan, M. & Çelebi, C. Adsorbate-induced enhancement of the spectral response in graphene/silicon-based Schottky barrier photodetectors. Appl. Phys. A 126, 938 (2020). https://doi.org/10.1007/s00339-020-04120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04120-1

Keywords

Navigation