Skip to main content
Log in

Synthesis of Ag3PO4 microstructures with morphology-dependent optical and photocatalytic behaviors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The photodegradation activity and stability of silver orthophosphate (Ag3PO4) photocatalysts have been greatly attributed to the morphology and exposed crystal facets. In this study, visible light-responsive Ag3PO4 photocatalysts with fern-like, multipod-like and tetrapod-like morphologies were successfully synthesized using a facile soft-chemical technique. The morphology-controlled synthesis was conducted by changing tetrahydrofuran/water volumetric ratios in solutions containing orthophosphoric acid and silver nitrate precursors. The morphology effect on the physicochemical properties was systematically investigated using analytical methods including FESEM, EDS, XRD, FT-IR, Raman, UV–Vis DRS and PL. Ag3PO4 microstructures were examined for their photocatalytic capabilities in the degradation of methylene blue (MB) under visible light irradiation. The assessment of the photocatalytic activity was performed through optimizing operational factors including irradiation time, pH, initial MB concentration and photocatalyst dosage. Fern-like Ag3PO4 microstructures exhibited the highest photodegradation efficiency compared to other morphologies in which the degradation order followed a trend as fern-like Ag3PO4 (85.91) > multipod-like Ag3PO4 (74.72) > tetrapod-like Ag3PO4 (62.92). The morphology-dependent photocatalytic performances of Ag3PO4 microstructures were perfectly in agreement with the recombination rate of photoexcited electron–hole pairs and visible light adsorption capacity. Photodegradation process kinetics was explored through the Langmuir–Hinshelwood model, while the adsorption equilibrium was surveyed using Langmuir and Freundlich isotherms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. V.G. Deonikar, K.K. Reddy, W.-J. Chung, H. Kim, J. Photochem. Photobiol. A Chem. 368, 168 (2019)

    Article  Google Scholar 

  2. J. Li, F. Yang, Q. Zhou, L. Wu, W. Li, R. Ren, Y. Lv, RSC Adv. 9, 23545 (2019)

    Article  Google Scholar 

  3. S.J. Park, G.S. Das, F. Schütt, R. Adelung, Y.K. Mishra, K.M. Tripathi, T. Kim, NPG Asia Mater. 11, 8 (2019)

    Article  ADS  Google Scholar 

  4. A. Ziashahabi, M. Prato, Z. Dang, R. Poursalehi, N. Naseri, Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  5. J. Mei, D. Zhang, N. Li, M. Zhang, X. Gu, S. Miao, S. Cui, J. Yang, J. Alloys Compd. 749, 715 (2018)

    Article  Google Scholar 

  6. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  ADS  Google Scholar 

  7. E. Prabakaran, K. Pillay, RSC Adv. 9, 7509 (2019)

    Article  Google Scholar 

  8. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Nat. Mater. 12, 798 (2013). https://doi.org/10.1038/nmat3697

    Article  ADS  Google Scholar 

  9. M.T. Momen, F. Piri, R. Karimian, React. Kinet. Mech. Catal 1 (2020)

  10. B. Mazinani, A. Beitollahi, A.K. Masrom, L. Samiee, Z. Ahmadi, Ceram. Int. 43, 11786 (2017)

    Article  Google Scholar 

  11. B. Mazinani, A. Beitollahi, S. Radiman, A.K. Masrom, S.M. Ibrahim, J. Javadpour, F.M.D. Jamil, J. Alloys Compd. 519, 72 (2012)

    Article  Google Scholar 

  12. B. Mazinani, A.K. Masrom, A. Beitollahi, R. Luque, Ceram. Int. 40, 11525 (2014)

    Article  Google Scholar 

  13. B. Mazinani, A. Beitollahi, A.K. Masrom, N. Yahya, T.S.Y. Choong, S.M. Ibrahim, J. Javadpour, Res. Chem. Intermed. 38, 1733 (2012)

    Article  Google Scholar 

  14. A. Haghighatzadeh, B. Mazinani, M. Shokouhimehr, L. Samiee, Desalin. Water Treat. 92, 145 (2017)

    Article  Google Scholar 

  15. A. Haghighatzadeh, B. Mazinani, M.S. Asl, L. Bakhtiari, Desalin. Water Treat. 80, 156 (2017)

    Article  Google Scholar 

  16. A. Haghighatzadeh, B. Mazinani, M.A. Salari, Acta. Phys. Pol. A. 132, 420 (2017)

    Article  Google Scholar 

  17. B. Mazinani, N.M. Zalani, M. Sakaki, K. Yanagisawa, J. Mater. Sci. Mater. Electron. 29, 11945 (2018)

    Article  Google Scholar 

  18. A. Haghighatzadeh, M. Hosseini, B. Mazinani, M. Shokouhimehr, Mater. Res. Express. 6, 115060 (2019)

    Article  ADS  Google Scholar 

  19. L. Liu, Y. Qi, J. Lu, S. Lin, W. An, Y. Liang, W. Cui, Appl. Catal. B Environ. 183, 133 (2016)

    Article  Google Scholar 

  20. K. Huang, Y. Lv, W. Zhang, S. Sun, B. Yang, F. Chi, S. Ran, X. Liu, Mater. Res. 18, 939 (2015)

    Article  Google Scholar 

  21. Q. Chen, Y. Wang, Y. Wang, X. Zhang, D. Duan, C. Fan, J. Colloid Interface Sci. 491, 238 (2017)

    Article  ADS  Google Scholar 

  22. D. Zhang, J. Wang, Mater. Res. 20, 702 (2017)

    Article  Google Scholar 

  23. J. Singleton, Oxford University Press, Oxford (2001)

  24. M.M. Khan, S.A. Ansari, M.I. Amal, J. Lee, M.H. Cho, Nanoscale. 5, 4427 (2013)

    Article  ADS  Google Scholar 

  25. N. Keshvadi, A. Haghighatzadeh, B. Mazinani, Appl. Phys. A. 126, 1 (2020)

    Article  Google Scholar 

  26. M.A. Dil, A. Haghighatzadeh, B. Mazinani, Bull. Mater. Sci. 42, 248 (2019)

    Article  Google Scholar 

  27. T. Thi, V. Ha, T.N. Pham, T.T. Pham, M.C. Le, J. Chem. (2019)

  28. T. Yan, J. Tian, W. Guan, Z. Qiao, W. Li, J. You, B. Huang, Appl. Catal. B Environ. 202, 84 (2017)

    Article  Google Scholar 

  29. C. Zheng, H. Yang, Z. Cui, H. Zhang, X. Wang, Nanoscale Res. Lett. 12, 1 (2017)

    Article  Google Scholar 

  30. G. Botelho, J.C. Sczancoski, J. Andres, L. Gracia, E. Longo, J. Phys. Chem. C. 119, 6293 (2015)

    Article  Google Scholar 

  31. X. Chen, Y. Dai, X. Wang, J. Alloys Compd. 649, 910 (2015)

    Article  Google Scholar 

  32. G. Botelho, J. Andres, L. Gracia, L.S. Matos, E. Longo, ChemPlusChem 81, 202 (2016)

    Article  Google Scholar 

  33. H. Yu, D. Wang, B. Zhao, Y. Lu, X. Wang, S. Zhu, W. Qin, M. Huo, Sep. Purif. Technol. 237, 116365 (2020)

    Article  Google Scholar 

  34. P. Wu, H. Peng, Y. Wu, L. Li, X. Hao, B. Peng, G. Meng, J. Wu, Z. Liu, J. Electron. Sci. Technol. 100019 (2020)

  35. P. Dong, G. Hou, C. Liu, X. Zhang, H. Tian, F. Xu, X. Xi, R. Shao, Materials (Basel). 9, 968 (2016)

    Article  ADS  Google Scholar 

  36. P. Reunchan, A. Boonchun, N. Umezawa, Phys. Chem. Chem. Phys. 18, 23407 (2016)

    Article  Google Scholar 

  37. H. Wang, L. He, L. Wang, P. Hu, L. Guo, X. Han, J. Li, Cryst. Eng. Comm. 14, 8342 (2012)

    Article  Google Scholar 

  38. F. Yan, G. Shen, X. Yang, T. Qi, J. Sun, X. Li, M. Zhang, Appl. Surf. Sci. 479, 1141 (2019)

    Article  ADS  Google Scholar 

  39. J. Wang, F. Teng, M. Chen, J. Xu, Y. Song, X. Zhou, Cryst. Eng. Comm. 15, 39 (2013)

    Article  Google Scholar 

  40. D.A. Septiarini, M. Kurniasih, R. Andreas, D. Hermawan, U. Sulaeman, in: IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing 12151 (2019)

  41. P. Dong, Y. Hao, P. Gao, E. Cui, Q. Zhang, J. Nanomater. (2015)

  42. M.A. Morales, I. Fernández-Cervantes, R. Agustín-Serrano, S. Ruíz-Salgado, M.P. Sampedro, J.L. Varela-Caselis, R. Portillo, E. Rubio, Res. Phys. 12, 1344 (2019)

    Google Scholar 

  43. I. Fernández-Cervantes, M.A. Morales, E. Rubio, R. Agustín-Serrano, Wulfenia 22, 1 (2015)

    Google Scholar 

  44. G.I. Tóth, G. Tegze, T. Pusztai, G. Tóth, L. Gránásy, J. Phys. Condens. Matter. 22, 364101 (2010)

    Article  Google Scholar 

  45. M. Li, M. Chen, J. Wang, F. Teng, Cryst. Eng. Comm. 16, 1237 (2014)

    Article  Google Scholar 

  46. R.N. Bharathi, S. Sankar, J. Inorg. Organomet. Polym. Mater 28, 1829 (2018)

    Article  Google Scholar 

  47. M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam, K.M. Garadkar, Ceram. Int. 40, 5489 (2014)

    Article  Google Scholar 

  48. P. Muhammed Shafi, A. Chandra Bose, AIP Adv. 5, 57137 (2015)

    Article  ADS  Google Scholar 

  49. G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34 (1956)

    Article  ADS  Google Scholar 

  50. V. Ramasamy, G. Vijayalakshmi, Superlattices Microstruct. 85, 510 (2015)

    Article  ADS  Google Scholar 

  51. A.R. Stokes, A.J.C. Wilson, Proc. Phys. Soc. 56, 174 (1944)

    Article  ADS  Google Scholar 

  52. V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6, 6 (2012)

    Article  ADS  Google Scholar 

  53. B. Chai, J. Li, Q. Xu, Ind. Eng. Chem. Res. 53, 8744 (2014)

    Article  Google Scholar 

  54. W. Zhang, L. Zhou, J. Shi, H. Deng, Catalysts. 8, 45 (2018)

    Article  Google Scholar 

  55. S. Kumar, N.K. Verma, M.L. Singla, Dig. J. Nanomater. Bios. 7, 607 (2012)

    Google Scholar 

  56. X. Song, R. Li, M. Xiang, S. Hong, K. Yao, Y. Huang, Ceram. Int 43, 4692 (2017)

    Article  Google Scholar 

  57. S. Huang, Y. Xu, Q. Liu, T. Zhou, Y. Zhao, L. Jing, H. Xu, H. Li, Appl. Catal. B Environ. 218, 174 (2017)

    Article  Google Scholar 

  58. J.J. Liu, X.L. Fu, S.F. Chen, Y.F. Zhu, Appl. Phys. Lett. 99, 191903 (2011)

    Article  ADS  Google Scholar 

  59. A. Ali, A. Mannan, I. Hussain, I. Hussain, M. Zia, Environ. Nanotechnol. Monit. Manag. 9, 1 (2018)

    Google Scholar 

  60. M.M. El-Moselhy, S.M. Kamal, Groundw. Sustain. Dev. 6, 6 (2018)

    Google Scholar 

  61. F. Nekouei, S. Nekouei, J. Alloys Compd. 701, 950 (2017)

    Article  Google Scholar 

  62. E. Gunasundari, S. Kumar, J. Ind. Eng. Chem. 56, 129 (2017)

    Article  Google Scholar 

  63. K.H. Yoon, J.S. Noh, C.H. Kwon, M. Muhammed, Mater. Chem. Phys. 95, 79 (2006)

    Article  Google Scholar 

  64. R. Li, X. Song, Y. Huang, Y. Fang, M. Jia, W. Ma, Journal Mol. Catal. A, Chem. (2016). doi:https://doi.org/10.1016/j.molcata.2016.05.009.

  65. L.M.F. Arias, A.A. Duran, D. Cardona, E. Camps, M.E. Gómez, G. Zambrano, in: J (IOP Publishing, Phys. Conf. Ser., 2015), p. 12008

    Google Scholar 

  66. P. Sivakumar, G.K.G. Kumar, S. Renganathan, J. Nanostruct. Chem. 4, 107 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work was partially supported by Ahvaz Branch of Islamic Azad University and the authors would like to thank the Research Council for their generous support of this work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Haghighatzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batvandi, M., Haghighatzadeh, A. & Mazinani, B. Synthesis of Ag3PO4 microstructures with morphology-dependent optical and photocatalytic behaviors. Appl. Phys. A 126, 571 (2020). https://doi.org/10.1007/s00339-020-03761-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03761-6

Keywords

Navigation