Skip to main content

Advertisement

Log in

Study of the physical properties of quaternary Ge–As–Te–Pb thin films for technology applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

As the chalcogenide thin films have broad technological applications due to the ability of tuning their properties through composition change, lead addition has been used to tune the energy gap, refractive index, and non-linear optical parameters of Ge25As10Te65−xPbx thin films. The optical constants of Ge–As–Te thin films have been studied when introducing different contents of Pb. Tauc’s rule of the allowed indirect transitions was successfully used to describe the optical transitions of the Ge25As10Te65−xPbx (0 ≤ x ≤ 10 at. %) thin films. It was found that when increasing Pb content the optical band gap (\( E_{\text{g}}^{\text{opt}} \)) decreases whereas the index of refraction increases. The obtained behavior of \( E_{\text{g}}^{\text{opt}} \) was interpreted in terms of Mott and Davis model. The energy reliance of the index of refraction (n) shows a normal dispersion that may be explained using the single oscillator model. Applying such model allowed to estimate the static index of refraction (no) and the energies of both single oscillator (Eo) and dispersion (Ed). In addition, the non-linear optical parameters such as the third-order susceptibility (χ(3)) and nonlinear index of refraction (\( n_{2}^{*} \)) have been deduced from Eo, Ed and no values. Both χ(3) and \( n_{2}^{*} \) increase with increasing Pb content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Panpan Guo, Chengdong Li, Wei Huang, Wei Zhang, Peiqing Zhang, Xu Tiefeng, Opt. Mater. Express 10(1), 129–137 (2020)

    Article  ADS  Google Scholar 

  2. Arnaud Lemière, Frédéric Désévédavy, Bertrand Kibler, Pierre Mathey, Grégory Gadret, Jean-Charles Jules, Christophe Aquilina, Pierre Béjot, Franck Billard, Olivier Faucher, Frédéric Smektala, Laser Phys. Lett. 16(7), 075402 (2019)

    Article  ADS  Google Scholar 

  3. Hao Xiong, Zheyao Wang, J. Micromech. Microeng. 29(8), 085002 (2019)

    Article  ADS  Google Scholar 

  4. P. Immanuel, G. Senguttuvan, K. Mohanraj, Int. J. Thin Films Sci. Technol. 9, 57–67 (2020)

    Article  Google Scholar 

  5. J. Heo, in Chalcogenide Glasses, ed. by J.L. Adam, X. Zhang (Woodhead Publishing, Oxford, 2014)

    Google Scholar 

  6. S. Kumar, D. Singh, S. Sandhu, R. Thangaraj, Vacuum 86(10), 1443–1447 (2012)

    Article  ADS  Google Scholar 

  7. M. Ahmad, R. Thangaraj, T.S. Sathiaraj, J. Mater. Sci. 45(5), 1231–1236 (2010)

    Article  ADS  Google Scholar 

  8. Xusheng Xiao, Xu Yantao, Jian Cui, Xiaogang Liu, Xiaoxia Cui, Xunsi Wang, Shixun Dai, Haitao Guo, J. Am. Ceram. Soc. 103(4), 2432–2442 (2020)

    Article  Google Scholar 

  9. B.C. Jamalaiah, N. Madhu, K. Venkata Rao, G. Viswanadha, D.V. Raghu Ram, J. Lumin 233, 117200–117201 (2020)

    Article  Google Scholar 

  10. J. Xue, X. Wang, J.H. Jeong, X. Yan, Chem. Eng. J. 383, 123082 (2020)

    Article  Google Scholar 

  11. S.Q. Hazaa, H.R. Shaker, Int. J. Thin Films Sci. Technol. 7(1), 105–112 (2018)

    Article  Google Scholar 

  12. W. Omwansu, M. Munji, C. Migwi, Int. J. Thin Films Sci. Technol. 7, 113–121 (2018)

    Article  Google Scholar 

  13. A. Alasvand, H. Kafashan, J. Alloy. Compd. 817, 152711 (2020)

    Article  Google Scholar 

  14. L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A.B. Seddon, T.M. Benson, S. Sujecki, Opt. Mater. 36(6), 1076–1082 (2014)

    Article  ADS  Google Scholar 

  15. A. Medjouri, D. Abed, Opt. Mater. 97, 109391 (2019)

    Article  Google Scholar 

  16. L. Kassab, S. Tatumi, C. Mendes, L. Courrol, N. Wetter, Opt. Express 6(4), 104–108 (2000)

    Article  ADS  Google Scholar 

  17. J. Pisarska, W.A. Pisarski, W. Ryba-Romanowski, Opt. Laser Technol. 42(5), 805–809 (2010)

    Article  ADS  Google Scholar 

  18. H. Doweidar, A.H. Oraby, Phys. Chem. Glasses 38(2), 69–73 (1997)

    Google Scholar 

  19. I. Kashif, A. Abd El-Maboud, R. El-Said, E.M. Sakr, A.A. Soliman, J. Alloys Compd. 539, 124–128 (2012)

    Article  Google Scholar 

  20. Y.B. Saddeek, K. Aly, G. Abbady, N. Afify, K.S. Shaaban, A. Dahshan, J. Non-Cryst. Solids 454, 13–18 (2016)

    Article  ADS  Google Scholar 

  21. K.A. Aly, N. Afify, A.M. Aboushly, Phys. B 405(7), 1846–1851 (2010)

    Article  ADS  Google Scholar 

  22. N.F. Borrelli, J. Appl. Phys. 38(11), 4243–4247 (1967)

    Article  ADS  Google Scholar 

  23. N.F. Borrelli, A. Herczog, R.D. Maurer, Appl.Phys. Lett. 7(5), 117–118 (1965)

    Article  ADS  Google Scholar 

  24. G.-H. Hwang, H.-J. Jeon, Y.-S. Kim, J. Am. Ceram. Soc. 85(12), 2956–2960 (2002)

    Article  Google Scholar 

  25. K.A. Aly, Appl. Phys. A Mater. Sci. Process. 120(1), 293–299 (2015)

    Article  ADS  Google Scholar 

  26. K.A. Aly, A. Dahshan, I.S. Yahia, Philos. Mag. 92(8), 912–924 (2012)

    Article  ADS  Google Scholar 

  27. K.A. Aly, Phil. Mag. 89(12), 1063–1079 (2009)

    Article  ADS  Google Scholar 

  28. M.S. Kamboj, R. Thangaraj, EPJ Appl. Phys. 24(1), 33–36 (2003)

    Article  ADS  Google Scholar 

  29. M.S. Kamboj, R. Thangaraj, D.K. Avasthi, EPJ Appl. Phys. 31(1), 23–25 (2005)

    Article  ADS  Google Scholar 

  30. Y.B. Saddeek, K.A. Aly, A. Dahshan, I.M. El Kashef, J. Alloy. Compd. 494(1–2), 210–213 (2010)

    Article  Google Scholar 

  31. S. Simon, R. Pop, V. Simon, M. Coldea, J. Non-Cryst. Solids 331(1), 1–10 (2003)

    Article  ADS  Google Scholar 

  32. R. Kaur, S. Singh, O.P. Pandey, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 305, 51–54 (2013)

    Article  ADS  Google Scholar 

  33. S. Tolansky, M. Omar, Nature 170(4315), 81–82 (1952)

    Article  Google Scholar 

  34. J. Tauc, A. Menth, J. Non-Cryst. Solids 8-10(C), 569–585 (1972)

    Article  ADS  Google Scholar 

  35. K.A. Aly, H.H. Amer, A. Dahshan, Mater. Chem. Phys. 113(2–3), 690–695 (2009)

    Article  Google Scholar 

  36. M. Fadel, K. Sedeek, N.A. Hegab, Vacuum 57(3), 307–317 (2000)

    Article  ADS  Google Scholar 

  37. N.F. Mott, E.A. Davis, R.A. Street, Philos Mag 32(5), 961–996 (1975)

    Article  ADS  Google Scholar 

  38. F. Urbach, Phys. Rev. 92(5), 1324 (1953)

    Article  ADS  Google Scholar 

  39. A.A. Othman, Thin Solid Films 515(4), 1634–1639 (2006)

    Article  ADS  Google Scholar 

  40. P. Brocos, A. Pineiro, R. Bravo, A. Amigo, Phys. Chem. Chem. Phys. 5, 550–557 (2003)

    Article  Google Scholar 

  41. S.H. Wemple, J. Chem. Phys. 67(5), 2151–2168 (1977)

    Article  ADS  Google Scholar 

  42. K. Tanaka, Thin Solid Films 66(3), 271–279 (1980)

    Article  ADS  Google Scholar 

  43. A.K. Aly, H.H. Hegazy, A. Dahshan, K.S. Shaaban, Y. Saddeek, S.R. Alharbi, A.M. Ali, S.A. Amin, Applied Physics A 124(12), 868 (2018)

    Article  Google Scholar 

  44. K.A. Aly, F.M. Abdel-Rahim, J. Alloy. Compd. 561, 284–290 (2013)

    Article  Google Scholar 

  45. A.S. Hassanien, K.A. Aly, A.A. Akl, J. Alloy. Compd. 685, 733–742 (2016)

    Article  Google Scholar 

  46. D. Minkov, E. Vateva, E. Skordeva, D. Arsova, M. Nikiforova, J. Non-Cryst. Solids 90(1–3), 481–484 (1987)

    Article  ADS  Google Scholar 

  47. H. Tichá, L. Tichý, J. Optoelectron. Adv. Mater. 4(2), 381–386 (2002)

    Google Scholar 

  48. S.H. Wemple, M. DiDomenico, Phys. Rev. B 3(4), 1338–1351 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Deanship of Scientific Research, Majmaah University, Saudi Arabia, for funding this search work under Grant 24-1439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M., Aly, K.A., Dahshan, A. et al. Study of the physical properties of quaternary Ge–As–Te–Pb thin films for technology applications. Appl. Phys. A 126, 510 (2020). https://doi.org/10.1007/s00339-020-03672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03672-6

Keywords

Navigation