Skip to main content
Log in

Use of BaO-aided structural change of BaO–ZnO–TeO2 glass to enhance the optical properties of its doped activators by optimizing their surrounding ionic field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Spectroscopic studies of BaO effect on the Yb3+-doped BaO–ZnO–TeO2 glasses of varied BaO content reveal that the integrated emission of constant amount of Yb3+ in these glasses increases with the increase in BaO. Excitation spectra exhibit a phonon progression of ~ 150 cm−1, while FTIR spectra of the glasses show a phonon at ~ 700 cm−1; intensity of both increases with increase in BaO. The phonons are identified, respectively, as the rotational and stretching vibrations of loosely bound tellurite (TeO3/Te2O52−) units of the host’s structure, concentration of which increases with the increase in BaO. Specific volume data, XRD, HRTEM investigations suggest that large Ba2+ ions in these glasses attract the tellurite units toward its vicinity inducing a compaction. Ba2+-substituted Yb3+ ions in the glass because of higher charge density attract the tellurite units even closer and experience greater ionic field exhibiting efficient luminescence. Glass is potential host for designing new generation efficient optical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Bose, D. Misra, R. Debnath, Opt. Mater. 36, 221–227 (2013)

    Article  ADS  Google Scholar 

  2. S. Bose, R. Debnath, J. Lumin. 155, 210–217 (2014)

    Article  Google Scholar 

  3. A. Kaur, A. Khanna, L.I. Aleksandrov, J. Non Cryst. Solids 476, 67–74 (2017)

    Article  ADS  Google Scholar 

  4. S. Marjanovic, J. Toulouse, H. Jain, C. Sandmann, V. Dierolf, A.R. Kortan, N. Kopylov, R.G. Ahrens, J. Non Cryst. Solids 322, 311–318 (2003)

    Article  ADS  Google Scholar 

  5. W.C. Wang, W.J. Zhang, L.X. Li, Y. Liu, D.D. Chen, Q. Qian, Q.Y. Zhang, Opt. Mater. Express 6, 2095–2107 (2016)

    Article  ADS  Google Scholar 

  6. J.C. Sabadel, P. Armand, D. Cachau-Herreillat, P. Baldeck, O. Doclot, A. Ibanez, E. Philippot, J. Solid State Chem. 132, 411–419 (1997)

    Article  ADS  Google Scholar 

  7. S. Manning, H. Ebendorff-Heidepriem, T.M. Monro, Opt. Mater. Express 2, 140–152 (2012)

    Article  ADS  Google Scholar 

  8. G.S. Murugan, T. Suzuki, Y. Ohishi, J. Appl. Phys. 100, 023107 (2006)

    Article  ADS  Google Scholar 

  9. G. Guery, A. Fargues, T. Cardinal, M. Dussauze, F. Adamietz, V. Rodriguez, J.D. Musgraves, K. Richardson, P. Thomas, Chem. Phys. Lett. 554, 123–127 (2012)

    Article  ADS  Google Scholar 

  10. M. Guignard, J.W. Zwanziger, J. Non Cryst. Solids 353, 1662–1664 (2007)

    Article  ADS  Google Scholar 

  11. T. Sekiya, N. Mochida, A. Ohtsuka, J. Non Cryst. Solids 168, 106–114 (1994)

    Article  ADS  Google Scholar 

  12. N. Manikandan, A. Ryasnyanskiy, J. Toulouse, J. Non Cryst. Solids 358, 947–951 (2012)

    Article  ADS  Google Scholar 

  13. Y. Himei, A. Osaka, T. Nanba, Y.J. Miura, J. Non Cryst. Solids 177, 164–169 (1994)

    Article  ADS  Google Scholar 

  14. T. Sekiya, N. Mochida, A. Ohtsuka, M. Tonokawa, J. Non Cryst. Solids 144, 128 (1992)

    Article  ADS  Google Scholar 

  15. M. Arnaudov, Y. Dimitriev, Phys. Chem. Glasses 42, 99–102 (2001)

    Google Scholar 

  16. S. Sakida, J. Jin, T. Yoko, Phys. Chem. Glasses 41, 65–70 (2000)

    Google Scholar 

  17. S. Balaji, A.D. Sontakke, K. Annapurna, J. Opt. Soc. Am. B 29, 1569–1579 (2012)

    Article  ADS  Google Scholar 

  18. R. Debnath, S. Bose, J. Lumin. 161, 103–109 (2015)

    Article  Google Scholar 

  19. Y. Dimitriev, V. Dimitrov, M. Arnaudov, J. Mater. Sci. 18, 1353 (1983)

    Article  ADS  Google Scholar 

  20. V.G. Plotnichenko, V.V. Koltashev, V.O. Sokolov, N.V. Popova, I.A. Grishin, M.F. Churbanov, J. Phys. D Appl. Phys. 41, 015404 (2008)

    Article  ADS  Google Scholar 

  21. E. Stavrou, C. Tsiantos, R.D. Tsopouridou, S. Kripotou, A.G. Kontos, C. Raptis, B. Capoen, M. Bouazaoui, S. Turrell, S. Khatir, J. Phys. Condens. Matter 22, 195103 (2010)

    Article  ADS  Google Scholar 

  22. H.A.A. Sidek, S. Rosmawati, B.Z. Azmi, A.H. Shaari, Adv. Condens. Matter Phys. 2013, 783207 (2013)

    Article  Google Scholar 

  23. J.L. Gomes, R.L. Santos Piazzetta, A. Gonçalves, A. Somer, G.K. da Cruz, F.C. Serbena, A. Novatski, J. Mater. Res. 30, 2417–2424 (2015)

    Article  ADS  Google Scholar 

  24. H. Fares, I. Jlassi, H. Elhouichet, M. Férid, J. Non Cryst. Solids 1, 396–397 (2014)

    Google Scholar 

  25. R. Mishra, S. Phapale, P. Samui, A. Nagaraj, S.R. Dharwadkar, J. Phase Equilib. Diffus. 35, 127–136 (2014)

    Article  Google Scholar 

  26. J. Wroblewska, A. Erb, J. Dobrowolski, W. Freundlich, Rev. Chim. Miner. 16, 112–123 (1979)

    Google Scholar 

  27. M.G. Johnston, W.T.A. Harrison, Acta Cryst. Sect. E Struct. Rep. E58, i59–i61 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Preparation of the glass samples and studies of their optical properties were made by utilizing the facilities generated by RD at the School of Laser Science and Engineering, Jadavpur University (J.U.), Kolkata, India, utilizing the funds received from CSIR and BRNS, India, respectively, during his tenure as CSIR-Emeritus Scientist. RD thanks both CSIR and BRNS, India, for their funding. The authors are also thankful to Mr. Pallab Dasgupta, Department of Instrumentation Science and Prof. K. K. Chattopadhyay, Department of Physics, both of J. U. Kolkata, respectively, for recording the XRD spectrum and snapping the HRTEM. They are also thankful to Mr. D. Sengupta, formerly a Research Scholar of I.A.C.S., Kolkata, India, for recording the FTIR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Debnath.

Ethics declarations

Conflict of interest

There is no conflict of interest in relation to the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, R., Bose, S. Use of BaO-aided structural change of BaO–ZnO–TeO2 glass to enhance the optical properties of its doped activators by optimizing their surrounding ionic field. Appl. Phys. A 126, 403 (2020). https://doi.org/10.1007/s00339-020-03590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03590-7

Keywords

Navigation