Skip to main content
Log in

Fabrication and photoresponse characteristics of high rectification photodetector based on methyl violet nanoparticles-PVA/p-si heterojunction for optoelectronic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this perspective research, methyl violet 6B, a nanocrystalline dye, is exploited as an impregnating material for improving the absorption and photoconductivity characteristics of polyvinyl alcohol, PVA. The PVA-MV composite thin film's structure and morphology revealed a uniform smooth surface with 9.7 nm root mean square roughness. The optical absorption of PVA thin film is enhanced after the dye incorporation and exhibited an energy gap modification from 4.36 to 1.75 eV. Moreover, we fabricated an Ag/PVA-MV/p-Si/Al MIS Schottky diode and investigated its electrical characteristics in dark. The heterojunction's microelectronic parameters such as ideality factor, reverse saturation current, barrier height, rectification ratio are estimated and found to be 2.5, 6.4 nA, 0.78 eV, and 8795.2 at 3 V, respectively. A significant quasi-saturated reverse photocurrent with obvious sensitivity for light intensity variations is detected. The fabricated photodetector exhibited responsivity, specific detectivity, and signal-to-noise ratio ~ 2.622 mA/W, 6.46 × 109 Jones, and 407.9, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12

Similar content being viewed by others

References

  1. S. Naama, T. Hadjersi, A. Keffous, G. Nezzal, CO2 gas sensor based on silicon nanowires modified with metal nanoparticles. Mater. Sci. Semicond. Process. 38, 367–372 (2015)

    Article  Google Scholar 

  2. R. Vittal, Kuo-Chuan Ho, Zinc oxide based dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev. 70, 920–935 (2017)

    Article  Google Scholar 

  3. İ. Dökme, T. Tunç, İ. Uslu, Ş. Altındal, The Au/polyvinyl alcohol (Co, Zn-doped)/n-type silicon Schottky barrier devices. Synth. Met. 161, 474–480 (2011)

    Article  Google Scholar 

  4. S. Demirezen, S.A. Yerişkin, A detailed comparative study on electrical and photovoltaic characteristics of Al/p-Si photodiodes with coumarin-doped PVA interfacial layer: The effect of doping concentration. Polym. Bull. (2019). https://doi.org/10.1007/s00289-019-02704-3

    Article  Google Scholar 

  5. A.M. Nawar, A.M. El-Mahalawy, Heterostructure device based on Brilliant Green nanoparticles–PVA/p-Si interface for analog-digital converting dual-functional sensor applications. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-02874-1

    Article  Google Scholar 

  6. H. Abdel-Khalek, E. Shalaan, M. EL Salam, A.M. El-Sagheer, A.M. El-Mahalawy, Effect of thermal annealing on structural, linear and nonlinear optical properties of 1, 4, 5, 8-naphthalene tetracarboxylic dianhydride thin films. J. Mol. Struct. 1178, 408–419 (2019)

    Article  ADS  Google Scholar 

  7. T. Zhu, M.N. Chong, Prospects of metal-insulator-semiconductor (MIS) nanojunction structures for enhanced hydrogen evolution in photoelectrochemical cells: A review. Nano Energy 12, 347–373 (2015)

    Article  ADS  Google Scholar 

  8. C.-H. Lin, C.W. Liu, Metal-insulator-semiconductor photodetectors. Sensors 10, 8797–8826 (2010)

    Article  Google Scholar 

  9. P.K. Manda, L. Karunakaran, S. Thirumala, A. Chakravorty, S. Dutta, Modeling of organic metal-insulator-semiconductor capacitor. IEEE Trans. Electron. Dev. 66(9), 1–6 (2019)

    Article  Google Scholar 

  10. A. Di Bartolomeo, F. Giubileo, A. Grillo, G. Luongo, L. Iemmo, F. Urban, L. Lozzi, D. Capista, M. Nardone, M. Passacantando, Bias tunable photocurrent in metal-insulator-semiconductor heterostructures with photoresponse enhanced by carbon nanotubes. Nanomaterials 9, 1598 (2019)

    Article  Google Scholar 

  11. S. Alialy, H. Tecimer, H. Uslu, Ş. Altındal, A comparative study on electrical characteristics of Au/N-Si Schottky diodes, with and without Bi-doped PVA interfacial layer in dark and under illumination at room temperature. Nanomed. Nanotechnol. 4, 1000167–1000173 (2013)

    Google Scholar 

  12. S. Boughdachi, Y. Badali, Y. Azizian-Kalandaragh, Ş. Altindal, Current-transport mechanisms of the Al/(Bi2S3-PVA nanocomposite)/p-Si Schottky diodes in the temperature range between 220 K and 380 K. J. Electron. Mater. 47(12), 6946–6953 (2018)

    Article  ADS  Google Scholar 

  13. M. Gökçen, T. Tunç, Ş. Altındal, İ. Uslu, Electrical and photocurrent characteristics of Au/PVA (Co-doped)/n-Si photoconductive diodes. Mater. Sci. Eng. B 177, 416–420 (2012)

    Article  Google Scholar 

  14. S.S. Mousavi, B. Sajad, M.H. Majlesar, Fast response ZnO/PVA nanocomposite-based photodiodes modified by graphene quantum dots. Mater. Design 162, 249–255 (2019)

    Article  Google Scholar 

  15. Ç. Bilkan, Y. Badali, S. Fotouhi-Shablou, Y. Azizian-Kalandaragh, Ş. Altındal, On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2–PVA/n-Si Schottky barrier diodes. Appl. Phys. A 123, 560–569 (2017)

    Article  ADS  Google Scholar 

  16. M. Gökçen, T. Tunç, Ş. Altındal, İ. Uslu, The effect of PVA (Bi2O3-doped) interfacial layer and series resistance on electrical characteristics of Au/n-Si (110) Schottky barrier diodes (SBDs). Curr. Appl. Phys. 12, 525–530 (2012)

    Article  ADS  Google Scholar 

  17. Ş. Karataş, Frequency and voltage dependent electrical and dielectric properties of Ag/nGO doped PVA/p-Si sandwich structure at room temperature. J. Sandw. Struct. Mater. (2019). https://doi.org/10.1177/1099636219840605

    Article  Google Scholar 

  18. S. Chandra Kishorea, A. Pandurangan, Facile synthesis of carbon nanotubes and their use in the fabrication of resistive switching memory devices. RSC Adv. 4, 9905–9911 (2014)

    Article  Google Scholar 

  19. F.M. Ali, R.M. Kershi, M.A. Sayed, Y.M. AbouDeif, Evaluation of structural and optical properties of Ce3+ ions doped (PVA/ PVP) composite films for new organic semiconductors. Phys. B 538, 160–166 (2018)

    Article  ADS  Google Scholar 

  20. I.S. Yahia, S.M.A.S. Keshk, S. AlFaify, A.M. El-Naggar, M.M. Abutalib, Synthesis and characterization of wide-scale UV–vis CUT-OFF laser filter using methyl violet-6B/PMMA polymeric composite films. Sens. Actuators A 269, 388–393 (2018)

    Article  Google Scholar 

  21. Ahmed M. Nawar, Fast processed crystalline methyl violet-6B thin films for optimizing the light-harvesting characteristics of Ag/methyl violet 6B/p-Si/Al solar cells. Appl. Phys. A 125(3), 210–228 (2019)

    Article  ADS  Google Scholar 

  22. M. Shkir, V. Ganesh, I.S. Yahia, H.S.M. Abd-Rabboh, S. AlFaify, Effects of methyl violet dye on the growth and properties of zinc (tris) thiourea sulfate single crystals. J. Phys. Chem. Solids 123, 336–343 (2018)

    Article  ADS  Google Scholar 

  23. G. Vinitha, A. Ramalingam, Spectral characteristics and nonlinear studies of methyl violet 2B dye in liquid and solid media. Laser Phys. 18(1), 37–42 (2008)

    Article  ADS  Google Scholar 

  24. Ö. Güllü, M. Çankaya, M. Bider, A.J. Türüt, Gamma irradiation-induced changes at the electrical characteristics of organic-based Schottky structures. Phys. D Appl. Phys. 41(3), 135103–135109 (2008)

    Article  ADS  Google Scholar 

  25. A. Hadlar, S. Maity, N.B. Manik, Effect of back electrode on photovoltaic properties of crystal-violet-dye-doped solid-state thin film. Ionics 14, 427–432 (2008)

    Article  Google Scholar 

  26. T.M. El-Agez, S.A. Taya, K.S. Elrefi, M.S. Abdel-Latif, Dye-sensitized solar cells using some organic dyes as photosensitizers. Optica Appl. (2014). https://doi.org/10.5277/oa140215

    Article  Google Scholar 

  27. A. Haldar, S. Maity, N.B. Manik, Effect of C60 on methyl red and crystal violet dye-doped photovoltaic device. Ionics 14, 263–267 (2008)

    Article  Google Scholar 

  28. H.M. Zeyada, M.M. EL-Nahass, I.S. Elashmawi, A.A. Habashi, Annealing temperatures induced optical constant variations of methyl violet 2B thin films manufactured by the spin coating technique. J. Non-Cryst. Solids 358, 625–636 (2012)

    Article  ADS  Google Scholar 

  29. H.M. Zeyada, M.M. Makhlouf, Electrical conduction mechanisms and dielectric constants of nanostructured methyl violet 2B thin films. Appl. Phys. A 119, 1109–1118 (2015)

    Article  ADS  Google Scholar 

  30. H.M. Zeyada, M.M. Makhlouf, A.S. Behairy, M.A. Nasher, Fabrication, electrical transport mechanisms and photovoltaic properties of methyl violet 2B/n-Si hybrid organic/inorganic solar cell. Microelectron. Eng. 163, 134–139 (2016)

    Article  Google Scholar 

  31. A. Ozkartal, R.H. Hamad Ameen, C. Temirci, A. Turut, Electrical properties of Sn/Methyl Violet/p-Si/Al Schottky diodes. Mater. Today Proc. 18, 1811–1818 (2019)

    Article  Google Scholar 

  32. H. Abdel-Khalek, M.I. El-Samahi, M.-E. Salam, A.M. El-Mahalawy, Fabrication and performance evaluation of ultraviolet photodetector based on organic /inorganic heterojunction. Curr. Appl. Phys. 18, 1496–1506 (2018)

    Article  ADS  Google Scholar 

  33. C. Tang, Y. Tian, S. Hsu, Poly(vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: Mineralization behavior and characterization. Materials 8, 4895–4911 (2015)

    Article  ADS  Google Scholar 

  34. S. Sreeja, S. Sreedhanya, N. Smijesh, R. Philip, C.I. Muneera, Organic dye impregnated poly(vinyl alcohol) nanocomposite as an efficient optical limiter: Structure, morphology and photophysical properties. J. Mater. Chem. C 1, 3851–3861 (2013)

    Article  Google Scholar 

  35. S.M. El-Bashir, I.S. Yahia, M.A. Binhussain, M.S. AlSalhi, Designing of PVA/Rose Bengal long-pass optical window applications. Res. Phys. 7, 1238–2124 (2017)

    Google Scholar 

  36. K. Deshmukh, M.B. Ahamed, R.R. Deshmukh et al., Influence of K2CrO4 doping on the structural, optical and dielectric properties of polyvinyl alcohol/K2CrO4 composite films. Polym. Plast. Technol. Eng. 55, 231–241 (2016)

    Article  Google Scholar 

  37. A. Jochen Campo, F. Painelli, T.V. Terenziani, D. Regemorter, E. Beljonne, E. Goovaerts, W. Wenseleers, First hyperpolarizability dispersion of the octupolar molecule crystal violet: Multiple resonances and vibrational and solvation effects. J. Am. Chem. Soc. 132(46), 16467–16478 (2010)

    Article  Google Scholar 

  38. J. Tauc, A. Menth, States in the gap. J. Non- cryst. Solids 8–10, 569–585 (1972)

    Article  ADS  Google Scholar 

  39. A.M. El-Mahalawy, Structural and optical characteristics of nickel bis(acetylacetonate) thin films as a buffer layer for optoelectronic applications. Mater. Sci. Semicond. Process. 100, 145–158 (2019)

    Article  Google Scholar 

  40. A.M. Nawar, M. Abd-Elsalam, A.M. El-Mahalawy, M.M. El-Nahass, Analyzed electrical performance and induced interface passivation of fabricated Al/NTCDA/p-Si MIS–Schottky heterojunction. Appl. Phys. A 126, 113–131 (2020)

    Article  ADS  Google Scholar 

  41. H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052–5053 (1979)

    Article  ADS  Google Scholar 

  42. B. Pradhan, A.K. Sharma, A.K. Ray, A simple hybrid inorganic-polymer photodiode. J. Phys. D: Appl. Phys. 42, 165308–165311 (2009)

    Article  ADS  Google Scholar 

  43. C.J. Novotny, E.T. Yu, P.K.L. Yu, InP Nanowire/Polymer Hybrid photodiode. Nano Lett. 8, 775–779 (2008)

    Article  ADS  Google Scholar 

  44. Z. Yuan, Yu Junsheng, W. Ma, Y. Jiang, A photodiode with high rectification ratio based on well-aligned ZnO nanowire arrays and regioregular poly(3-hexylthiophene-2,5-diyl) hybrid heterojunction. Appl. Phys. A 106, 511–515 (2012)

    Article  ADS  Google Scholar 

  45. Z. Yuan, A photodiode with high rectification ratio and low turn-on voltage based on ZnO nanoparticles and SubPc planar heterojunction. Phys. E 56, 160–164 (2014)

    Article  Google Scholar 

  46. I. Missoum, Y.S. Ocak, M. Benhaliliba, C.E. Benouis, A. Chaker, Microelectronic properties of organic Schottky diodes based on MgPc for solar cell applications. Synth. Met. 214, 76–81 (2016)

    Article  Google Scholar 

  47. Ö. Tüzün Özmen, E. Yağlıoğlu, Electrical and interfacial properties of Au/P3HT: PCBM/n-Si Schottky barrier diodes at room temperature. Mater. Sci. Semicond. Process. 26, 448–454 (2014)

    Article  Google Scholar 

  48. S. Fonash, Solar Cell Device Physics, 1st edn. (Academic press, Belton, Texas, 1981)

    Google Scholar 

  49. R.T. Tung, The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014)

    Article  ADS  Google Scholar 

  50. A. Vilan, D. Cahen, Chemical modification of semiconductor surfaces for molecular electronics. Chem. Rev. 117, 4624–4666 (2017)

    Article  Google Scholar 

  51. S. Alborghetti, P. Stamenov, Modeling of electronic transport through metal/polymer interfaces in thin film transistors. ISRN Electron. (2013). https://doi.org/10.1155/2013/652587

    Article  Google Scholar 

  52. N. Koch, A. Kahn, J. Ghijsen et al., Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism. Appl. Phys. Lett. 82(1), 70–72 (2003)

    Article  ADS  Google Scholar 

  53. G. Horowitz, Organic thin film transistors: From theory to real devices. J. Mater. Res. 19(7), 1946–1962 (2004)

    Article  ADS  Google Scholar 

  54. R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, V. Balasubramani, P. Vivek, R. Suresh, Ultra-high photoresponse with superiorly sensitive metal insulator- semiconductor (MIS) structured diodes for UV photodetector application. Appl. Surf. Sci. 480, 308–322 (2019)

    Article  ADS  Google Scholar 

  55. Lu Yanghua, S. Feng, Wu Zhiqian, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, S. Lin, Broadband surface plasmon resonance enhanced self-powered graphene/ GaAs photodetector with ultrahigh detectivity. Nano Energy 47, 140–149 (2018)

    Article  ADS  Google Scholar 

  56. X. Gong, M. Tong, Y. Xia, W. Cai, J.S. Moon, Y. Cao et al., High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665–1667 (2009)

    Article  ADS  Google Scholar 

  57. H. Abdel-Khalek, E. Shalaan, M.-E. Salam, A.M. El-Mahalawy, Effect of illumination intensity on the characteristics of Cu(acac)2/n-Si Photodiode. Synth. Met. 245, 223–236 (2018)

    Article  Google Scholar 

  58. M. Bednorz, G.J. Matt, E.D. Głowacki, T. Fromherz, C.J. Brabec, M.C. Scharber, H. Sitter, N. Serdar Sariciftci, Silicon/organic hybrid heterojunction infrared photodetector operating in the telecom regime. Org. Electron. 14, 1344–1350 (2013)

    Article  Google Scholar 

  59. H.A. El-Khalek, M.A. Salam, F.M. Amin, Fabrication and characterization of dual-band organic/inorganic photodetector for optoelectronic applications. Curr. Appl. Phys. 19, 629–638 (2019)

    Article  ADS  Google Scholar 

  60. D. Yang, D. Ma, Development of organic semiconductor photodetectors: From mechanism to applications. Adv. Optical Mater. 7, 1800522 (2019)

    Article  Google Scholar 

  61. A.O. Goushcha, B. Tabbert, On response time of semiconductor photodiodes. Opt. Eng. 56(9), 097101–097107 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. El-Mahalawy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Mahalawy, A.M., Salam, M.AE. Fabrication and photoresponse characteristics of high rectification photodetector based on methyl violet nanoparticles-PVA/p-si heterojunction for optoelectronic applications. Appl. Phys. A 126, 393 (2020). https://doi.org/10.1007/s00339-020-03588-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03588-1

Keywords

Navigation