Skip to main content
Log in

Effect of Cr substitution on structural, magnetic and impedance spectroscopic properties of Cd0.5Zn0.5Fe2−xCrxO4 ferrites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cr-substituted Cd–Zn spinel ferrites of different compositions (Cd0.5Zn0.5Fe2−xCrxO4) were prepared using solgel method for x = 0 and 0.5. The XRD analysis and Rietveld refinements indicate that samples crystallize in the cubic \(Fd\overline{3}m\) spinel structure and the lattice parameters decrease with Cr substitution. Two principal absorption bands related to the stretching vibration of tetrahedral and octahedral sites were shown from FTIR spectra. The spontaneous magnetization, coercivity and remanance were also investigated for the prepared samples. DC conductivity was found to decrease with the substitution of Cr. The studies of imaginary part of permittivity and tangent loss reveal that the prepared materials may be good candidates for some interesting electronics devices. An electrical relaxation phenomenon with non-Debye nature was observed from the variations of imaginary parts of modulus and impedance. The estimated activation energies values from relaxation time and dc-conductivity are very close. Electrical parameters deduced from the Nyquist plots using an equivalent circuit show that the conduction process in the prepared samples is due to the grain boundaries contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. For spinel ferrites having general formula of \(\left( {M_{1 - \lambda }^{2 + } {\text{Fe}}_{\lambda }^{3 + } } \right)_{A} [M_{\lambda }^{2 + } {\text{Fe}}_{2 - \lambda }^{3 + } ]_{B} {\text{O}}_{4}^{2 - }\), where M is one or more divalent (often transition metal) cations, the term λ represents the so-called degree of inversion which is defined as the fraction of the A sites occupied by Fe3+ cations and its value depends on the method of preparation and heat treatment effects [17].

References

  1. M.T. Rahman, M. Vargas, C.V. Ramana, J. Alloys Compd. 617, 547 (2014)

    Google Scholar 

  2. G. Mustafa, M.U. Islam, W. Zhang, Y. Jamil, A.W. Anwar, M. Hussain, M. Ahmad, J. Alloys Compd. 618, 428 (2015)

    Google Scholar 

  3. E. Mazarío, P. Herrasti, M.P. Morales, N. Menéndez, Nanotechnology 23, 355708 (2012)

    Google Scholar 

  4. K. Chen, L. Jia, X. Yu, H. Zhang, J. Appl. Phys. 115, 17A520 (2014)

    Google Scholar 

  5. S. Rahman, K. Nadeem, M. Anis-ur-Rehman, M. Mumtaz, S. Naeem, I. Letofsky-Papst, Ceram. Int. 39, 5235 (2013)

    Google Scholar 

  6. Li. Sun, R. Zhang, Q. Ni, E. Cao, W. Hao, Y. Zhang, L. Ju, Phys. B 545 (2018) 4.

  7. M.F. Valan, A. Manikandan, S.A. Antony, J. Nanosci. Nanotechnol. 15, 4543 (2015)

    Google Scholar 

  8. M. Gupta, M. Gupta, R.K. Mudsainiyan, B.S. Randhawa, J. Anal. Appl. Pyrolysis 116, 75 (2015)

    Google Scholar 

  9. M. Chakrabarti, D. Sanyal, A. Chakrabarti, J. Phys. Condens. Matter 19, 236210 (2007)

    ADS  Google Scholar 

  10. B. Ramesh, S. Ramesh, R.V. Kumar, M.L. Rao, J. Alloys Compd. 513, 289 (2012)

    Google Scholar 

  11. H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)

    Google Scholar 

  12. S.M. Patange, S.E. Shirsath, S.S. Jadhav, K.M. Jadhav, Phys. Status Solidi A 209, 347 (2012)

    ADS  Google Scholar 

  13. M.A. Hakim, S.K. Nath, S.S. Sikder, K.H. Maria, J. Phys. Chem. Solids 74, 1316 (2013)

    ADS  Google Scholar 

  14. K.A.M. Khalaf, A.D. Al Rawas, A.M. Gismelssed, A. Al Jamel, S.K.J. Al Ani, M.S. Shongwe, K.O. Al Riyami, S.R. Al Alawi, J. Alloys Compd. 701 (2017) 474.

  15. S.M. Patange, S.E. Shirsath, G.S. Jangam, K.S. Lohar, S.S. Jadhav, K.M. Jadhav, J. Appl. Phys. 109, 053909 (2011)

    ADS  Google Scholar 

  16. Z. Cvejic, S. Rakic, A. Kremenovic, B. Antic, C. Jovalekic, P. Colomban, Solid State Sci. 8, 908 (2006)

    ADS  Google Scholar 

  17. A. Gholizadeh, E. Jafari, J. Magn. Magn. Mater. 422, 328 (2017)

    ADS  Google Scholar 

  18. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    ADS  Google Scholar 

  19. S.M. Patange, S.E. Shirsath, K.S. Lohar, S.G. Algude, S.R. Kamble, N. Kulkarni, D.R. Mane, K.M. Jadhav, J. Magn. Magn. Mater. 325, 107 (2013)

    ADS  Google Scholar 

  20. S. Hcini, N. Kouki, A. Omri, A. Dhahri, M.L. Bouazizi, J. Magn. Magn. Mater. 464, 91 (2018)

    ADS  Google Scholar 

  21. P.P. Hankare, R.P. Patil, U.B. Sankpal, K.M. Garadkar, R. Sasikala, A.K. Tripathi, I.S. Mulla, J. Magn. Magn. Mater. 322, 2629 (2010)

    ADS  Google Scholar 

  22. S. Hcini, S. Zemni, A. Triki, H. Rahmouni, M. Boudard, J. Alloys Compd. 509, 1394 (2011)

    Google Scholar 

  23. E. AlArfaj, S. Hcini, A. Mallah, M.H. Dhaou, M.L. Bouazizi, J. Supercond. Nov. Magn. 31, 4107 (2018)

    Google Scholar 

  24. K.A.M. Khalaf, A.D. Al-Rawas, H.M. Widatallah, A. Sellai, A.M. Gismelseed, M. Hashim, S.K. Jameel, M.S. Al-Ruqeishi, K. Al-Riyami, J. Alloy Compd. 657, 733 (2016)

    Google Scholar 

  25. S.J. Yoon, S.H. Lee, K.H. Kim, K.S. Ahn, Mater. Chem. Phys. 73, 330 (2002)

    Google Scholar 

  26. R.D. Waldron, Phys. Rev. 99, 1727 (1955)

    ADS  Google Scholar 

  27. N. Kouki, S. Hcini, R. Aldawas, M. Boudard, J. Supercond. Nov. Magn. 32, 2209 (2019)

    Google Scholar 

  28. H. Shokrollahi, K. Janghorban, J. Mater. Process. Technol. 189, 1 (2007)

    Google Scholar 

  29. S.M. Patange, S.E. Shirsath, B.G. Toksha, S.S. Jadhav, K.M. Jadhav, J Appl Phys. 106, 023914 (2009)

    ADS  Google Scholar 

  30. F. Kenfack, H. Langbein, J. Mater. Sci. 41, 3683 (2006)

    ADS  Google Scholar 

  31. S. Chikazumi, S. Charap, Physics of Magnetism (Wiley, New York, 1964), p. 153

    Google Scholar 

  32. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18, 115028 (2009)

    ADS  Google Scholar 

  33. M. Hsini, N. Hamdaoui, S. Hcini, M.L. Bouazizi, S. Zemni, L. Beji, Phase Transit. 91, 316 (2018)

    Google Scholar 

  34. S. Hcini, S. Khadhraoui, A. Triki, S. Zemni, M. Boudard, M. Oumezzine, J. Supercond. Nov. Magn. 27, 195 (2014)

    Google Scholar 

  35. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Google Scholar 

  36. M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, A. Jemni, Appl. Phys. A 123, 8 (2017)

    ADS  Google Scholar 

  37. F.B. Abdallah, A. Benali, S. Azizi, M. Triki, E. Dhahri, M.P.F. Graça, M.A. Valente, J. Mater. Sci. Mater. Electron. 30, 8457 (2019)

    Google Scholar 

  38. N. Kumari, V. Kumar, S.K. Singh, S. Khasa, M.S. Dahiya, Phys. E Low Dimens. Syst. Nanostruct. 86, 168 (2017)

    ADS  Google Scholar 

  39. E. Oumezzine, S. Hcini, F.I.H. Rhouma, M. Oumezzine, J. Alloys Compd. 726, 187 (2017)

    Google Scholar 

  40. H. Rahmouni, B. Cherif, R. Jemai, A. Dhahri, K. Khirouni, J. Alloys Compd. 690, 890 (2017)

    Google Scholar 

  41. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011)

    Google Scholar 

  42. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P. Houenou, J. Non-Cryst, Solids 45, 57 (1981)

    Google Scholar 

  43. L. Alexander, H.P. Klug, J. Appl. Phys. 21, 137 (1950)

    ADS  Google Scholar 

  44. N.H. Vasoya, P.K. Jha, K.G. Saija, S.N. Dolia, K.B. Zankat, K.B. Modi, J. Electron. Mater. 45, 917 (2016)

    ADS  Google Scholar 

  45. S. Saha, T.P. Sinha, Phys. Rev. B 65, 1341 (2005)

    Google Scholar 

  46. C.B. Mohamed, K. Karoui, S. Saidi, K. Guidara, A.B. Rhaiem, Phys. B 451, 87 (2014)

    ADS  Google Scholar 

  47. N. Sivakumar, A. Narayanasamy, N. Ponpandian, G. Govindaraj, J. Appl. Phys. 101, 084116 (2007)

    ADS  Google Scholar 

  48. S. Hcini, A. Omri, M. Boudard, M.L. Bouazizi, A. Dhahri, K. Touileb, J Mater Sci: Mater. Electron. 29, 6879 (2018)

    Google Scholar 

  49. S. Khadhraoui, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, J. Alloys Compd. 574, 290 (2013)

    Google Scholar 

  50. Johnson D. ZView: a software program for IES analysis. Version 2.8. Southern Pines, NC: Scribner Associates, Inc.; 2008.

Download references

Funding

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number 369.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobhi Hcini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hcini, F., Hcini, S., Alzahrani, B. et al. Effect of Cr substitution on structural, magnetic and impedance spectroscopic properties of Cd0.5Zn0.5Fe2−xCrxO4 ferrites. Appl. Phys. A 126, 362 (2020). https://doi.org/10.1007/s00339-020-03544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03544-z

Keywords

Navigation