Skip to main content
Log in

Electrochemical sensor study of TiO2 nanoparticle–graphene composite produced by mechanical milling and sonication-assisted exfoliation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

TiO2 nanoparticle-decorated graphene was produced by mechanical milling of TiO2 powder with graphite followed by sonication of the nanocomposite in the presence of sodium lauryl sulfate surfactant. Sonication led to the exfoliation of graphite to produce TiO2 nanoparticle–graphene composite. The as-prepared TiO2–graphite nanocomposite was characterized using X-ray diffraction and scanning electron microscopy and the exfoliated TiO2–graphene nanocomposite was analyzed using Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. The results indicated the formation of faceted titanium dioxide particles with an average size of ~ 200 nm. Thickness of the few layered graphene sheets was found to be 2 + 0.8 nm. The glassy carbon electrode coated with the TiO2 nanoparticle–graphene composite was used to detect potassium ferricyanide (K3FeCN6) by cyclic voltammetric method. TiO2 nanoparticle–graphene-coated surface demonstrated improved response with enhanced current for K3FeCN6 detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X.Z. Li, F.B. Li, Environ. Sci. Technol. 35(11), 2381 (2001)

    Article  ADS  Google Scholar 

  2. Z. Mengyu, C. Shifu, T. Yaowu, J. Chem. Technol. Biotechnol. 64(4), 339 (1995)

    Article  Google Scholar 

  3. M. Auffan, M. Pedeutour, J. Rose, A. Masion, F. Ziarelli, D. Borschneck, C. Chaneac, C. Botta, P. Chaurand, J. Labille, J.Y. Bottero, Environ. Sci. Technol. 44(7), 2689 (2010)

    Article  ADS  Google Scholar 

  4. G. William, B. Seger, P.V. Kamat, ACS Nano 2(7), 1487 (2008)

    Article  Google Scholar 

  5. J.C. Yu, W. Ho, J. Lin, H. Yip, P.K. Wong, Environ. Sci. Technol. 37(10), 2296 (2003)

    Article  ADS  Google Scholar 

  6. R.J. Nussbaumer, W.R. Caseri, P. Smith, T. Tervoort, Macromol. Mater. Eng. 288(1), 44 (2003)

    Article  Google Scholar 

  7. T.C. Jagadale, S.P. Takale, R.S. Sonawane, H.M. Joshi, S.I. Patil, B.B. Kale, S.B. Ogale, J. Phys. Chem. C 112(37), 14595 (2008)

    Article  Google Scholar 

  8. S. Seifried, M. Winterer, H. Hahn, Chem. Vap. Depos. 6(5), 239 (2000)

    Article  Google Scholar 

  9. Z. Song, J. Hrbek, R. Osgood, Nano Lett. 5(7), 1327 (2005)

    Article  ADS  Google Scholar 

  10. Z. Liu, D.D. Sun, P. Guo, J.O. Leckie, Chem. Eur. J. 13(6), 1851 (2007)

    Article  Google Scholar 

  11. S.H. Baeck, T.F. Jaramillo, A.K. Shwarsctein, E.W. McFarland, Meas. Sci. Technol. 16(1), 54 (2004)

    Article  ADS  Google Scholar 

  12. J.A. Gerbec, D. Magana, A. Washington, G.F. Strouse, J. Am. Chem. Soc. 127(45), 15791 (2005)

    Article  Google Scholar 

  13. T.P. Yadav, R.M. Yadav, D.P. Singh, J. Nanosci. Nanotechnol. 2(3), 22 (2012)

    Article  Google Scholar 

  14. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8(3), 902 (2008)

    Article  ADS  Google Scholar 

  15. G. Wei, X. Quan, S. Chen, H. Yu, ACS Nano 11(2), 1920 (2017)

    Article  Google Scholar 

  16. C. Gomez-Navarro, M. Burghard, K. Kern, Nano Lett. 8(7), 2045 (2008)

    Article  ADS  Google Scholar 

  17. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457(7230), 706 (2009)

    Article  ADS  Google Scholar 

  18. Z. Li, M. He, D. Xu, Z. Liu, J. Photochem. Photobiol. C 18, 1 (2014)

    Article  Google Scholar 

  19. Y. Zhang, C. Pan, J. Mater. Sci. 46(8), 2622 (2011)

    Article  ADS  Google Scholar 

  20. J.S. Lee, K.H. You, C.B. Park, Adv. Mater. 24(8), 1084 (2012)

    Article  Google Scholar 

  21. R. Long, N.J. English, O.V. Prezhdo, J. Am. Chem. Soc. 134(34), 14238 (2012)

    Article  Google Scholar 

  22. X.Y. Zhang, H.P. Li, X.L. Cui, Y. Lin, J. Mater. Chem. 20(14), 2801 (2010)

    Article  Google Scholar 

  23. B. Jiang, C. Tian, Q. Pan, Z. Jiang, J.Q. Wang, W. Yan, J. Phys. Chem. C 115(48), 23718 (2011)

    Article  Google Scholar 

  24. T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, D.L. Huber, J. Phy. Chem. C 113(46), 19812 (2009)

    Article  Google Scholar 

  25. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus Jr., ACS Catal. 2(6), 949 (2012)

    Article  Google Scholar 

  26. W. Li, D. Li, Q. Fu, C. Pan, RSC Adv. 5, 80428 (2015)

    Article  Google Scholar 

  27. K. Chu, X.-H. Wang, F. Wang, Y.B. Li, D.-J. Huang, H. Liu, W.-L. Ma, F.-X. Liu, H. Zhang, Carbon 127, 102 (2018)

    Article  Google Scholar 

  28. Z. Ren, N. Meng, K. Shehzad, Y. Xu, S. Qu, B. Yu, J.K. Luo, Nanotechnology 26, 065706 (2015)

    Article  ADS  Google Scholar 

  29. P.V. Adhyapak, A.D. Bang, P. More, N.R. Munirathnam, RSC Adv. 8, 34035 (2018)

    Article  Google Scholar 

  30. Y. Chen, P. Potschke, J. Pionteck, B. Voit, H. Qi, J. Mater. Chem. A 6, 7777 (2018)

    Article  Google Scholar 

  31. E. Lee, D. Lee, J. Yoon, Y. Yin, Y.N. Lee, S. Uprety, Y.S. Yoon, D.-J. Kim, Sensors 18, 3334 (2018)

    Article  Google Scholar 

  32. V. Galstyan, A. Ponzoni, I. Kholmanov, M.M. Natile, E. Comini, S. Nematov, G. Sberveglieri, A.C.S. Appl, Nano Mater. 1, 7098 (2018)

    Article  Google Scholar 

  33. H.D. Jang, S.K. Kim, H. Chang, K.-M. Roh, J.-W. Choi, J. Huang, Biosens. Bioelectron. 38, 184 (2012)

    Article  Google Scholar 

  34. F. Pogacean, M.C. Rosu, M. Coros, L. Magerusan, M. Moldovan, C. Sarosi, A.S. Porav, R.I.S.V. Staden, S. Pruneanu, J. Electrochem. Soc. 165(8), B3054 (2018)

    Article  Google Scholar 

  35. J. Bai, B. Zhou, Chem. Rev. 2014(114), 10131 (2014)

    Article  Google Scholar 

  36. S.A. Khan, Z. Arshad, S. Shahid, I. Arshad, K. Rizwan, M. Sher, U. Fatima, Compos. Part B Eng. 175, 107120 (2019)

    Article  Google Scholar 

  37. M.A. Mohamed, S.A. Atty, H.A. Merey, T.A. Fattah, C.W. Foster, C.E. Banks, Analyst 142, 3674 (2017)

    Article  ADS  Google Scholar 

  38. Y. Fan, K.-J. Huang, D.-J. Niu, C.-P. Yang, Q.-S. Jing, Electrochim. Acta 56, 4685 (2011)

    Article  Google Scholar 

  39. B. Wang, W.A. Abdulla, D. Wang, X.S. Zhao, Energy Environ. Sci. 8, 869 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Research funding received form Ministry of Mines Government of India. Microscopy facilities at AFMM, IISc is acknowledged.

Funding

Funding was provided by Science and Engineering Research Board (Grant No. DSTO1904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, S., Punith Kumar, M.K. & Srivastava, C. Electrochemical sensor study of TiO2 nanoparticle–graphene composite produced by mechanical milling and sonication-assisted exfoliation. Appl. Phys. A 125, 674 (2019). https://doi.org/10.1007/s00339-019-2974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2974-1

Navigation