Skip to main content

Advertisement

Log in

Differential scanning calorimetry response of aged NiTiHfPd shape memory alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Phase transformation characteristics of an aged NiTiHfPd shape memory alloy were investigated through thermal cycling experiments via the differential scanning calorimetry technique. Effects of heating/cooling rate and thermal cycling on the phase transformation temperatures, enthalpies, and thermal hysteresis values were revealed. It was found that phase transformation temperatures and thermal hysteresis values alter considerably with thermal cycling. The transformation temperatures were found to be above 80 °C for all the heating rates, which makes this alloy a promising candidate for high-temperature applications in the selected aging conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.V. Humbeeck, Non-medical applications of shape memory alloys. Mater. Sci. Eng. A 134, 273–275 (1999)

    Google Scholar 

  2. G. Airoldi, G. Riva, B. Rivolta et al., DSC calibration in the study of shape memory alloys. J. Therm. Anal. 42, 781 (1994)

    Article  Google Scholar 

  3. J. Ma, I. Karaman, R.D. Noebe, High temperature shape memory alloys. Int. Mater. Rev. 55, 257 (2010)

    Article  Google Scholar 

  4. H.E. Karaca, E. Acar, H. Tobe, M. Saghaian, NiTiHf-based shape memory alloys. Mater. Sci. Technol. 30, 13a (2014)

    Article  Google Scholar 

  5. H.E. Karaca, E. Acar, G.S. Ded, B. Basaran, H. Tobe, R.D. Noebe, G. Bigelow, Y.I. Chumlyakov, Shape memory behavior of high strength NiTiHfPd polycrystalline alloys. Acta Materialia 61, 5036 (2013)

    Article  Google Scholar 

  6. I. Kaya, H. Tobe, H.E. Karaca, E. Acar, Y. Chumlyakov, Shape memory behavior of [111]-oriented NiTi single crystals after stress-assisted aging. Acta Metallurgica Sinica (English Letters), 29(3), 282–286 (2016)

    Article  Google Scholar 

  7. E. Acar, O.E. Ozbulut, H.E. Karaca, Experimental investigation and the modeling of the loading rate and temperature dependent superelastic response of a high-performance shape memory alloy smart Mater. Struct. 24, 075020 (2015)

    Article  Google Scholar 

  8. E. Acar, H. Tobe, I. Kaya, H.E. Karaca, Y.I. Chumlyakov, Compressive response of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 shape memory alloys. J Mater Sci 50, 1924 (2015)

    Article  ADS  Google Scholar 

  9. H.E. Karaca, E. Acar, B. Basaran, R.D. Noebe, G. Bigelow, A. Garg, F. Yang, M.J. Mills, Y.I. Chumlyakov, Effects of aging on [111] oriented NiTiHfPd single crystals under compression. Scripta Materialia 67, 728 (2012)

    Article  Google Scholar 

  10. E. Acar, H.E. Karaca, B. Basaran, F. Yang, M.J. Mills, R.D. Noebe, Y.I. Chumlyakov, Role of aging time on the microstructure and shape memory properties of NiTiHfPd single crystals. Mater. Sci. Eng. A 573, 161 (2013)

    Article  Google Scholar 

  11. H.E. Karaca, E. Acar, B. Basaran, R.D. Noebe, Y.I. Chumlyakov, Superelastic response and damping capacity of ultra-high strength [111]-oriented NiTiHfPd single crystals Scripta Materilia 67:447(2012)

    Article  Google Scholar 

  12. E. Acar, H. Tobe, H.E. Karaca, R.D. Noebe, Y. Chumlyakov, Microstructure and shape memory behavior of [111]-oriented NiTiHfPd. alloys Smart Materials and Structures 25(3), 035011 (2016)

    Article  ADS  Google Scholar 

  13. S.H. Chang, S.K. Wu, Effect of cooling rate on transformation temperature measurements of Ti50Ni50 alloy by differential scanning calorimetry and dynamic mechanical analysis Mater Character 59, 987 (2008)

    Article  Google Scholar 

  14. C.M. Wayman, I. Cornelis, Transformation behavior and the shape memory in themally cycled TiNi Scripta Metallurgica 6, 115 (1972)

    Article  Google Scholar 

  15. N. Jost, E. Hornbogen, Influence of prior plastic deformation on the thermal- martensitic-transformation in an Fe-Ni-Al Alloy, J Mater. Sci. Lett. 6, 491 (1987)

    Article  Google Scholar 

  16. S. Besseghini, E. Villa, A. Tuissi, Ni-Ti-Hf shape memory alloy: effect of aging and thermal cycling. Mater. Sci. Eng. A A273, 390 (1999)

    Article  Google Scholar 

  17. S. Miyazaki, Y. Igo, K. Otsuka, Effect of thermal cycling on the transformation temperatures of TiNi alloys. Acta Metallurgica 34, 2045 (1986)

    Article  Google Scholar 

  18. M.S. Andrade, R.M. Osthues, G.J. Arruda, The influence of thermal cycling on the transition temperatures of a Fe-Mn-Si shape memory alloy Mater. Sci. Eng. A 512, 273–275 (1999)

    Google Scholar 

  19. D.W. Berzins, H.W. Roberts, Phase transformation changes in thermocycled nickel–titanium orthodontic wires. Dental Mater 26, 666 (2010)

    Article  Google Scholar 

  20. H. Sehitoglu, R. Hamilton, H.J. Maier, Chumlyakov YI Hysteresis in NiTi alloys. J Phys 115, 3 (2004)

    Google Scholar 

  21. F. Déborde, V. Pelosin, A. Rivière, Phase transformation in NiTi studied by isothermal mechanical spectrometry Scr. Metall. Mater. 33, 1993 (1995)

    Article  Google Scholar 

  22. C. Seguí, E. Cesari, J. Pons, V. Chernenko, Internal friction behaviour of Ni–Mn–Ga. Mater. Sci. Eng. A 370;481 (2004)

    Article  Google Scholar 

  23. J. San Juan, M.L. Nó, Damping behavior during martensitic transformation in shape memory alloys. J. Alloy. Compd. 355, 65 (2003)

    Article  Google Scholar 

  24. H.E. Karaca, E. Acar, G.S. Ded, S.M. Saghaian, B. Basaran, H. Tobe et al., Microstructure and transformation related behaviors of a Ni45.3Ti29.7Hf20Cu5 high temperature shape memory alloy. Mater. Sci. Eng. 627, 82 (2015)

    Article  Google Scholar 

  25. E. Panchenko, Y. Chumlyakov, I. Kireeva, A. Ovsyannikov, H. Sehitoglu, I. Karaman, Effect of disperse Ti3N4 particles on the martensitic transformations in titanium nickelide single crystals Phys. Metals Metallogr 106;577 (2008)

    Article  ADS  Google Scholar 

  26. P. Wollants, J.R. Roos, L. Dealey, Thermally and stress induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics Prog. Mater. Sci. 37, 227 (1993)

    Article  Google Scholar 

  27. J. Khalil-Allafi, B. Amin-Ahmadi, The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys J. Alloys Comp. 363, 1–2 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSF CMMI-15-38665, the NASA EPSCOR program under Grant no: NNX11AQ31A, KY EPSCoR RID program under Grant no: 3049024332, and Erciyes University under Grant no: FBA-2017-7604.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Acar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acar, E., Çalışkan, M. & Karaca, H.E. Differential scanning calorimetry response of aged NiTiHfPd shape memory alloys. Appl. Phys. A 125, 239 (2019). https://doi.org/10.1007/s00339-019-2543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2543-7

Navigation