Skip to main content
Log in

Structural, spectral, magnetic, and electrical properties of Gd–Co-co-substituted M-type Ca–Sr hexaferrites synthesized by the ceramic method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Gd–Co-co-substituted M-type Ca–Sr hexaferrites with nominal compositions Ca0.40Sr0.60−xGdxFe12.00−xCoxO19 (0.00 ≤ x ≤ 0.32) were prepared using the standard ceramic method. The particle size of obtained hexaferrite powders is between 2 and 5 µm. These hexaferrites were characterized by thermal analyzer (TG-DSC), X-ray diffractometer (XRD), Fourier transformer infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM), and resistivity testing system. XRD patterns showed that the single M-type hexaferrite phase was obtained only if Gd–Co content (x) ≤ 0.16. FE-SEM micrographs indicated that the grains were platelet-like shapes. The saturation magnetization (Ms) and remanent magnetization (Mr) decreased with increasing Gd–Co content (x) from 0.00 to 0.32. The coercivity (Hc) first increased with Gd–Co content (x) from 0.00 to 0.24, and then decreased when Gd–Co content (x) ≥ 0.24. The DC electrical resistivity decreased with increasing Gd–Co content (x) from 0.00 to 0.32.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. T.T. Li, Y. Li, R.N. Wu, X.C. Fang, S.B. Su, A.L. Xia, C.G. Jin, X.G. Liu, A solution for the preparation of hexagonal M-type SrFe12O19 ferrite using egg-white: structural and magnetic properties. J. Magn. Magn. Mater. 393, 325 (2015)

    Article  ADS  Google Scholar 

  2. A. Baykal, H. Güngüneș, H. Sözeri, I. Md.Amir, S. Auwal, S.E. Asiri, A. Shirsath, A.D. Korkmaz, Magnetic properties and Mössbauer spectroscopy of Cu-Mn substituted SrFe12O19 hexaferrites. Ceram. Int. 43, 15486 (2017)

    Article  Google Scholar 

  3. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater Sci. 57, 1191 (2012)

    Article  Google Scholar 

  4. A.A. Nourbakhsh, A. Vahedi, A. Nemati, M. Noorbakhsh, S.N. Mirsatari, M. Shaygan, K.J.D. Mackenzie, Optimization of the magnetic properties and microstructure of Co2+-La3+ substituted strontium hexaferrite by varying the production parameters. Ceram. Int. 40, 5675 (2014)

    Article  Google Scholar 

  5. A. Sharbati, G.R. Amiri, Magnetic, microwave absorption and structural properties of Mg-Ti added Ca-M hexaferrite nanoparticles. J. Mater. Sci. Mater. Electron. 29, 1118 (2018)

    Article  Google Scholar 

  6. C. Lei, S. Tang, Y. Du, Synthesis of aligned La3+-substituted Sr-ferrites via molten salt assisted sintering and their magnetic properties. Ceram. Int. 42, 15511 (2016)

    Article  Google Scholar 

  7. Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101 (2016)

    Article  ADS  Google Scholar 

  8. W. Abbas, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, M.A. Khan, M.N. Akhtar, M. Ahmad, Structural and magnetic behavior of Pr-substituted M-type hexagonal ferrites synthesized by sol-gel autocombustion for a variety of applications. J. Magn. Magn. Mater. 374, 187 (2015)

    Article  ADS  Google Scholar 

  9. A. Thakur, R.R. Singh, P.B. Barman, Synthesis and characterizations of Nd3+ doped SrFe12O19. Mater. Chem. Phys. 141, 562 (2013)

    Article  Google Scholar 

  10. L. Lechevallier, J.M. Le Breton, A. Morel, J. Teillet, Structural and magnetic properties of Sr1−xSmxFe12O19 hexagonal ferrites synthesised by a ceramic process. J. Alloys Compd. 359, 310 (2003)

    Article  Google Scholar 

  11. G. Litsardakis, I. Manolakis, A.C. Stergiou, C. Serletis, K.G. Efthimiadis, New Dy-substituted Ba hexaferrites with high coercivity. IEEE Trans. Magn. 44, 4222 (2008)

    Article  ADS  Google Scholar 

  12. G. Litsardakis, I. Manolakis, C. Serletis, K.G. Efthimiadis, High coercivity Gd-substituted Ba hexaferrites, prepared by chemical coprecipitation. J. Appl. Phys. 103, 07E501 (2008)

    Article  Google Scholar 

  13. G. Murtaza Rai, M.A. Iqbal, K.T. Kubra, Effect of Ho3+ substitutions on the structural and magnetic properties of BaFe12O19 hexaferrites. J. Alloys Compd. 495, 229 (2010)

    Article  Google Scholar 

  14. A. Shayan, M. Abdellahi, F. Shahmohammadian, S. Jabbarzare, A. Khandan, H. Ghayour, Mechanochemically aided sintering process for the synthesis of barium ferrite: effect of aluminium substitution on microstructure, magnetic properties and microwave absorption. J. Alloys Compd. 708, 538 (2017)

    Article  Google Scholar 

  15. I.A. Auwal, H. Güngüneş, A. Baykal, S. Güner, S.E. Shirsath, M. Sertkol, Structural, morphological, optical, cation distribution and Mössbauer analysis of Bi3+ substituted strontium hexaferrite. Ceram. Int. 42, 8627 (2016)

    Article  Google Scholar 

  16. S. Katlakunta, S.S. Meena, S. Sirnath, M. Bououdina, R. Sandhya, K. Praveena, Improved magnetic properties of Cr3 doped SrFe12O19 via microwave hydrothermal route. Mater. Res. Bull. 63, 58 (2015)

    Article  Google Scholar 

  17. G. Asghar, M. Anis-ur-Rehman, Structural, dielectric and magnetic properties of Cr–Zn doped strontium hexa-ferrites for high frequency applications. J. Alloys Compd. 526, 85 (2012)

    Article  Google Scholar 

  18. T.P. Xie, L.J. Xu, C.L. Liu, Synthesis and properties of composite magnetic material SrCoxFe12–xO19 (x = 0–0.3). Powder Technol. 232, 87 (2012)

    Article  Google Scholar 

  19. A. Baykal, I.A. Auwal, S. Güner, H. Sözeri, Magnetic and optical properties of Zn2+ ion substituted barium hexaferrites. J. Magn. Magn. Mater. 430, 29 (2017)

    Article  ADS  Google Scholar 

  20. S. Vadivelan, N. Victor, Jaya, Investigation of magnetic and structural properties of copper substituted barium ferrite powder particles via co-precipitation. Results Phys. 6, 843 (2016)

    Article  ADS  Google Scholar 

  21. I. Bsoul, S.H. Mahood, Magnetic and structural properties of BaFe12–xGaxO19 nanoparticles. J. Alloys Compd. 489, 110 (2010)

    Article  Google Scholar 

  22. W. Li, X. Qiao, M. Li, T. Liu, H.X. Peng, La and Co substituted M-type barium ferrites processed by sol-gel combustion synthesis. Mater. Res. Bull. 48, 4449 (2013)

    Article  Google Scholar 

  23. Y.J. Yang, X.S. Liu, Microtructure and magnetic properties of La-Cu doped M-type strontium ferrites prepared by ceramic process. Mater. Technol. 29, 232 (2014)

    Article  Google Scholar 

  24. M.J. Iqbal, S. Farooq, Impact of Pr-Ni substitution on the electrical and magnetic properties of chemically derived nanosized hexaferrites. J. Alloys Compd. 505, 560 (2010)

    Article  Google Scholar 

  25. C. Herme, S.E. Jacobo, P.G. Bercoff, B. Arcondo, Mössbauer analysis of Nd-Co M-type strontium hexaferrite with different iron content. Hyperfine Interact. 195, 205 (2010)

    Article  ADS  Google Scholar 

  26. G. Litsardakis, I. Manolakis, K. Efthimiadis, Structural and magnetic properties of barium hexaferrites with Gd-Co substitution. J. Alloys Compd. 427, 194 (2007)

    Article  Google Scholar 

  27. H.M. Khan, M.U. Islam, Y.B. Xu, M.A. Iqbal, I. Ali, Structural and magnetic properties of TbZn-substituted calcium strontium M-type nano-structured hexa-ferrites. J. Alloys Compd. 589, 258 (2014)

    Article  Google Scholar 

  28. Z. Wu, R.N. Zhang, Z.W. Yu, L.W. Shan, L.M. Dong, X.Y. Zhang, The magnetic properties of permanent strontium ferrite doped with rare-earth by chemical co-precipitation method. Ferroelectrics 529, 120 (2018)

    Article  Google Scholar 

  29. M.J. Iqbal, M.N. Ashiq, Physical and electrical properties of Zr-Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383 (2008)

    Article  Google Scholar 

  30. Z.H. Hua, S.Z. Li, Z.D. Han, D.H. Wang, M. Lu, W. Zhong, B.X. Gu, Y.W. Du, The effec of La-Zn substitution on the microstructure and magnetic properties of the barium ferrites. Mater. Sci. Eng. A 448, 326 (2007)

    Article  Google Scholar 

  31. V.C. Chavan, S.E. Shisath, M.L. Mane, R.H. Kadam, S.S. More, Transformation of hexagonal to mixed spinel crystal structure and magnetic properties of Co2+ substituted BaFe12O19. J. Magn. Magn. Mater. 398, 32 (2016)

    Article  ADS  Google Scholar 

  32. D. Makovec, D. Primc, S. Šturm, A. Kodre, D. Hanžel, M. Drofenik, Structural properties of ultrafine Ba-hexaferrite nanoparticles. J. Solid State Chem. 196, 63 (2012)

    Article  ADS  Google Scholar 

  33. C. Serletis, G. Litsardakis, E. Pavlidou, K.G. Efthimiadis, Magnetic properties of co-precipitated hexaferrite powders with Sm-Co substitutions optimized with the molten flux method. Phys. B 525, 78 (2017)

    Article  ADS  Google Scholar 

  34. C.-C. Huang, A.-H. Jiang, C.-H. Liou, Y.-C. Wang, C.-P. Lee, T.-Y. Hung, C.-C. Shaw, Y.-H. Hung, M.-F. Kuo, C.-H. Cheng, Magnetic properties enhancement of cobalt-free M-type strontium hexagonal ferrites by CaCO3 and SiO2 addition. Intermetallics 89, 111 (2017)

    Article  Google Scholar 

  35. S.B. Galvão, A.C. Lima, S.N. de Medeiros, J.M. Soares, C.A. Paskocimas, The effect of the morphology on the magnetic properties of barium hexaferrite synthesized by Pechini method. Mater. Lett. 115, 38 (2014)

    Article  Google Scholar 

  36. B.H. Bhat, Effect of magnesium substitution on the structural and magnetic properties of M-type strontium hexaferrite. Sci. Eng. Appl. 2, 177 (2017)

    Google Scholar 

  37. P. Xu, X.J. Han, H.T. Zhao, Z.H. Liang, J.F. Wang, Effect of stoichiometry on the phase formation and magnetic properties of BaFe12O19 nanoparticles by reverse micelle technique. Mater. Lett. 62, 1305 (2008)

    Article  Google Scholar 

  38. M. Anis-ur-Rehman, G. Asghar, Variation in structural and dielectric properties of co-precipitated nanoparticles strontium ferrites due to value of pH. J. Alloys Compd. 509, 435 (2011)

    Article  Google Scholar 

  39. S. Güner, I.A. Auwal, A. Baykal, H. Sözeri, Synthesis, characterization and magneto optical properties of BaBixLaxYxFe12−3xO19 (0.0 ≤ x ≤ 0.33) hexaferrites. J. Magn. Magn. Mater. 416, 261 (2016)

    Article  ADS  Google Scholar 

  40. V.V. Soman, V.M. Nanoti, D.K. Kulkarni, Dielectric and magnetic properties of Mg-Ti substituted barium hexaferrite. Ceram. Int. 39, 5713 (2013)

    Article  Google Scholar 

  41. M.M.L. Sonia, S. Anand, V. Maria Vinosel, M. Asisi Janifer, S. Pauline, A. Manikandan, Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2–xO4 ferrite nano-crystallites synthesized by sol-gel route. J. Magn. Magn. Mater. 466, 238 (2018)

    Article  ADS  Google Scholar 

  42. S. Anand, A. Persis Amaliya, M. Asisi Janifer, S. Pauline, Structural, morphological and dielectric studies of zirconium substituted CoFe2O4 nanoparticles. Modern Electron. Mater. 3, 168 (2017)

    Article  Google Scholar 

  43. M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, Effect of lattice strain on structural, magnetic and dielectric properties of sol–gel synthesized nanocrystalline Ce3+ substituted nickel ferrite. J. Mater. Sci. Mater. Electron. 29, 15006 (2018)

    Article  Google Scholar 

  44. S. Singhal, T. Namgyal, J. Singh, K. Chandra, S. Bansal, A comparative study on the magnetic properties of MFe12O19 and MAlFe11O19 (M = Sr, Ba and Pb) hexaferrites with different morphologies. Ceram. Int. 37, 1833 (2011)

    Article  Google Scholar 

  45. Z. Mosleh, P. Kameli, M. Ranjbar, H. Salamati, Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticles. Ceram. Int. 40, 7279 (2014)

    Article  Google Scholar 

  46. A. Baniasadi, A. Ghasemi, A. Nemati, M.A. Ghadikolaei, E. Paimozd, Effect of Ti-Zn substitution structural, magnetic and microwave absorption characteristics of strontium hexaferrites. J. Alloys Compd. 583, 325 (2014)

    Article  Google Scholar 

  47. M.A. Khan, H. Ullah, M. Junaid, M.K. Sharif, M.F. Alboud, M.F. Warsi, S. Haider, Structural, magnetic and dielectric properties of Yb3+ doped BaCo-X hexagonal nanoferrites. J. Alloys Compd. 695, 3674 (2017)

    Article  Google Scholar 

  48. R. Vinaykumar, R. Mazumder, J. Bera, Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol-gel combustion and solid state route. J. Magn. Magn. Mater. 429, 359 (2017)

    Article  ADS  Google Scholar 

  49. J.H. Luo, Structural and magnetic properties of Nd-substituted strontium ferrite nanoparticles. Mater. Lett. 80, 162 (2012)

    Article  Google Scholar 

  50. Z. Wu, R. Zhang, Z. Yu, L. Shan, L. Dong, X. Zhang, Study on preparation and magnetic properties of SrGdxFe12–xCuxO19 (0.00 ≤ x ≤ 0.20) strontium ferrite prepared by solid phase method. Ferroelectrics 523, 82 (2018)

    Article  Google Scholar 

  51. L. Lechevallier, J.M. Le Breton, Substitution effects in M-type strontium hexaferrite powders investigated by Mössbauer spectrometry. J. Magn. Magn. Mater. 290–291, 1237 (2002)

    Google Scholar 

  52. J.M. Le Breton, J. Teillet, G. Wiesinger, A. Morel. F. kools, P. Tenaud, Mössbauer investigation of Sr-Fe-O hexaferrites with La-Co addition. IEEE Trans. Magn. 38, 2952 (2002)

    Article  ADS  Google Scholar 

  53. L. Lechevallier, J.M. Le Breton, J. Teillet, A. Morel. F. kools, P. Tenaud, Mössbauer investigation of Sr1–xLaxFe12–yCoyO19 ferrites. Phys. B 327, 135 (2003)

    Article  ADS  Google Scholar 

  54. J. Singh, C. Singh, D. Kaur, H. Zaki, I.A. Abdel-Latif, S.B. Narang, R. Jotania, S. Mishra, R. Joshi, P. Dhruv, M. Ghimiree, S.E. Shirsath, S.S. Meena, Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co2+-Al3+ doped M-type Ba-Sr hexaferrites synthesized by a ceramic method. J. Alloys Compd. 695, 1112 (2017)

    Article  Google Scholar 

  55. M. Md. Amir, S. Geleri, A. Güner, H. Baykal, Sözeri, Magneto optical properties of FeBxFe2–xO4 nanoparticles. J. Inorg. Organomet. Polym. 25, 1111 (2015)

    Article  Google Scholar 

  56. F.L. Wei, M. Lu, Z. Yang, The temperature dependence of magnetic properties of of Zn-Ti substituted Ba-ferrite particles for magnetic recording. J. Magn. Magn. Mater. 191, 249 (1999)

    Article  ADS  Google Scholar 

  57. M. El-Saadawy, DC conductivity for hexaferrites of the Co2−xCuxBaFe16O27 system. J. Magn. Magn. Mater. 219, 69 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 51272003 and 51472004), the Scientific Research Fund of SiChuan Provincial Education Department (nos. 13ZA0918, 14ZA0267, and 16ZA0330), the Major Project of Yibin City of China (nos. 2012SF034, 2016GY025, and 2016 QD002), Scientific Research Key Project of Yibin University (no. 2015QD13), and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University (no. JSWL2015KFZ04). This work was financially supported by the Anhui University Collaborative Innovation Research Center for “weak signal sensing materials and device integration” (Open Project in 2016). This work was financially supported by the Natural Science Foundation of China (Grant 51301152). This work was carried out with a financial support in part from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” among the leading world scientific and educational centers (nos. П02-2017-2-4, К3-2017-059). In SUSU, this work was supported by Act 211 Government of the Russian Federation, contract no. 02.A03.21.0011. In addition, the work was partially supported by the Ministry of Education and Science of the Russian Federation (10.9639.2017/8.9). Government task in SUSU 5.5523.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, F., Shao, J. et al. Structural, spectral, magnetic, and electrical properties of Gd–Co-co-substituted M-type Ca–Sr hexaferrites synthesized by the ceramic method. Appl. Phys. A 125, 37 (2019). https://doi.org/10.1007/s00339-018-2339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2339-1

Navigation