Skip to main content
Log in

Optical and electrical properties of nanostructured N,N′-diphenyl-N,N′-di-p-tolylbenzene-1,4-diamine organic thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we introduce an extensive study on nanostructured thin films of an organic small molecule N,N′-diphenyl-N,N′-di-p-tolylbenzene-1,4-diamine, (NTD). Further, the possibility of using NTD as a hole transport layer in optoelectronic devices is reported for the first time to the best of our knowledge. In this context, the thermal behaviour, crystal structure, optical absorption in ultraviolet–visible regions, and DC electrical conductivity of the as-deposited NTD thin films are investigated. The differential scanning calorimetry (DSC) investigations show that NTD has a phase transition at a high temperature of 190 °C which may not affect its morphological stability. Further, the XRD patterns reveal that NTD thin films have an as-amorphous nature with some crystals. Additionally, optical investigations indicate that the indirect electronic transition from valence to conduction band is the most probable transition which agrees well with the amorphous structure of NTD thin films. The value of the mobility gap decreases from 2.74 to 2.51 eV when the thickness of the films increases from 80 to 200 nm. Furthermore, the absorbance lies below 370 nm and the thinnest film of thickness 80 nm achieves the highest absorbance. Further, the DC electrical measurements show that the NTD film has an activation energy of 378 meV. The DC conductivity is interpreted in terms of the variable range hopping (VRH) model. Based on our studies, NTD thin films are proposed with thickness range 50–80 nm to serve as a hole transport layer in white organic light emitting diodes (OLEDs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Dou, Y. Liu, Z. Hong, G. Li, Y. Yang, Chem. Rev. 115, 12633 (2015)

    Article  Google Scholar 

  2. T.M. Figueira-Duarte, K. Müllen, Chem. Rev. 111, 7260 (2011)

    Article  Google Scholar 

  3. C. Garcias-Morales, D. Romero-Borja, J.L. Maldonado, A.E. Roa, M. Rodríguez, J.P. García-Merinos, A. Ariza-Castolo, Molecules 22, 1607 (2017)

    Article  Google Scholar 

  4. H. Sirringhaus, Adv. Mater. 26, 1319 (2014)

    Article  Google Scholar 

  5. N.F.F. Areed, M.F.O. Hameed, M. Hussein, S.S.A. Obayya, IET Optoelectron. 8, 167 (2014)

    Article  Google Scholar 

  6. A. Mishra, P. Bäuerle, Angew. Chemie Int. Ed. 51, 2020 (2012)

    Article  Google Scholar 

  7. S.S. A., M.A. O. Doha, M.F.O. Rahman, Hameed, Opt. Quantum Electron. 47, 1443 (2015)

    Article  Google Scholar 

  8. K. Hutchison, J. Gao, G. Schick, Y. Rubin, F. Wudl, J. Am. Chem. Soc. 121, 5611 (1999)

    Article  Google Scholar 

  9. J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, Appl. Phys. Lett. 729, 67 (2012)

    Google Scholar 

  10. Q. Huang, J. Li, G.A. Evrnenenko, P. Dutta, T.J. Marks, Chem. Mater. 18, 2431 (2006)

    Article  Google Scholar 

  11. Z.C.H.L.M. Peysokhan, J. Nanophotonics 8, 08099 (2014)

    Google Scholar 

  12. A. Udhiarto, Y. Sister, S. Rini, M. Asvial, B. Munir, Int. Conf. Qual. Res. pp. 137–140 (2015)

  13. M.Y. Lim, W.M.M. Yunus, Z.A. Talib, A. Kassim, C.F. Dee, A. Ismail, Am. J. Eng. Appl. Sci. 3, 64 (2010)

    Article  Google Scholar 

  14. K. Narayan, S. Varadharajaperumal, G. Mohan Rao, M. Manoj, Varma, T. Srinivas, Curr. Appl. Phys. 13, 18 (2013)

    Article  ADS  Google Scholar 

  15. A.S. Al-Fahdawi, H.A. Al-Kafajy, M.J. Al-Jeboori, S.J. Coles, C. Wilson, H. Potgieter, Acta Crystallogr. Sect. E Struct. Rep. Online 70, 2 (2014)

    Article  Google Scholar 

  16. Y. Sakamoto, T. Suzuki, A. Miura, H. Fujikawa, S. Tokito, Y. Taga, J. Am. Chem. Soc. 122, 1832 (2000)

    Article  Google Scholar 

  17. R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Brédas, M. Lögdlund, W.R. Salaneck, Nature 397, 121 (1999)

    Article  ADS  Google Scholar 

  18. I. Vragović, E.M. Calzado, M.A. Díaz García, C. Himcinschi, L. Gisslén, R. Scholz, J. Lumin. 128, 845 (2008)

    Article  Google Scholar 

  19. D. Kajiya, K. Saitow, Int. Conf. Optoelectron. pp. 1–2, (2012)

  20. S. Pfuetzner, A. Petrich, C. Malbrich, J. Meiss, M. Koch, M.K. Riede, M. Pfeiffer, K. Leo, Proc.of Spie 6999, 69991M (2008)

    Article  ADS  Google Scholar 

  21. I.S. Yahia, Y.S. Rammah, S. Alfaify, F. Yakuphanoglu, Superlattices Microstruct. 64, 58 (2013)

    Article  ADS  Google Scholar 

  22. M. Arshad, A. Maqsood, I.H. Gul, M. Anis-Ur-Rehman, Mater. Res. Bull. 87, 177 (2017)

    Article  Google Scholar 

  23. M.M. El-Nahass, A.A.M. Farag, A.A. Atta, Synth. Met. 159, 589 (2009)

    Article  Google Scholar 

  24. H.M. Zeyada, F.M. El-Taweel, M.M. El-Nahass, M.M. El-Shabaan, Chin. Phys. B 25, 77701 (2016)

    Article  Google Scholar 

  25. N.A. El-Ghamaz, A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, M.K. Awad, S.M. Morgan, Mater. Sci. Semicond. Process. 19, 150 (2014)

    Article  Google Scholar 

  26. A. Omar, A.F. Qasrawi, N.M. Gasanly, J. Alloys Compd. 724, 98 (2017)

    Article  Google Scholar 

  27. A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Youse, Solid State Sci. 13, 251 (2011)

    Article  ADS  Google Scholar 

  28. B.S. Prabhu, Y.T. Rao, K.V. Kumar, V.S.S. and Kumari, World J. Nano Sci. Eng. 4, 21 (2014)

    Article  ADS  Google Scholar 

  29. H.M. Zeyada, H.M. El-Mallah, T. Atwee, D.G. El-Damhogi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 179, 120 (2017)

    Article  ADS  Google Scholar 

  30. H.M. Zeyada, M.M. Makhlouf, Opt. Mater. (Amst). 54, 181 (2016)

    Article  ADS  Google Scholar 

  31. A.M. Nasr, H.I.A. El-kader, M. Farhat, Thin Solid Films 515, 1758 (2006)

    Article  ADS  Google Scholar 

  32. M.M. El-Nahass, H.M. Zeyada, M.S. Aziz, M.M. Makhlouf, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 62, 11 (2005)

    Article  ADS  Google Scholar 

  33. M.M. El-Nahass, K.F. Abd-El-Rahman, A.A. Al-Ghamdi, A.M. Asiri, Phys. B Condens. Matter 344, 398 (2004)

    Article  ADS  Google Scholar 

  34. J.N. Zemel, J.D. Jensen, R.B. Schoolar, Phys. Rev. 140, (1965)

  35. S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)

    Article  ADS  Google Scholar 

  36. A.S. Hassanien, J. Alloys Compd. 671, 566 (2016)

    Article  Google Scholar 

  37. A.S. Hassanien, A.A. Akl, J. Non. Cryst. Solids 432, 471 (2016)

    Article  ADS  Google Scholar 

  38. M.M. El-Nahass, A.F. El-Deeb, H.E.A. El-Sayed, A.M. Hassanien, Phys. B Condens. Matter 388, 26 (2007)

    Article  ADS  Google Scholar 

  39. H. Han, C. Davis, J.C. Nino, J. Phys. Chem. C 118, 9137 (2014)

    Article  Google Scholar 

  40. A.L. Efros, B.I. Shklovskii, J. Phys. C Solid State Phys. 8, 1 (1975)

    Article  Google Scholar 

  41. M.G. Hutchins, O. Abu-Alkhair, M.M. El-Nahass, K. Abdel-Hady, J. Non. Cryst. Solids 353, 4137 (2007)

    Article  ADS  Google Scholar 

  42. G.H. Jonker, J. Phys. Chem. Solids 9, 165 (1959)

    Article  ADS  Google Scholar 

  43. S. Matsumura, A.R. Hlil, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, A.S. Hay, Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 49, 511 (2008)

    Google Scholar 

  44. H.M. Zeyada, M.M. El-Nahass, M.M. El-Shabaan, Philos. Mag. 96, 1150 (2016)

    Article  ADS  Google Scholar 

  45. A.A.A. Darwish, M. Rashad, S.R. Alharbi, Appl. Phys. A 124, 447 (2018)

    Article  ADS  Google Scholar 

  46. H.Z.M. El-Nahass, N. El-Ghamaz, A. El-ghandour, Opt. Int. J. Light Electron Opt. (2018)

  47. S. Obayya, N.F. Areed, M.F. Hameed, M.H. Abdelrazik, Innov. Mater. Syst. Energy Harvest. Appl. (In L. Mescia, O. Losito, & F. Prudenzano (Eds.), (2015), pp. 26–62

  48. M.H. Muhammad, M.F.O. Hameed, S.S.A. Obayya, IEEE Photon. J. 9, (2017)

  49. S.S.A. Obayya., M. Hussein, K.R. Mahmoud, M.F.O. Hameed, J. Photon. Energy 8, 22502 (2017)

    Google Scholar 

  50. S.A. Aly, A.A. Akl, Chalcogenide Lett. 12, 489 (2015)

    Google Scholar 

  51. M. Pandiaraman, N. Soundararajan, C. Vijayan, J. Ovonic Res. 7, 21 (2011)

    Google Scholar 

  52. N.-K. Persson, M. Sun, P. Kjellberg, T. Pullerits, O. Inganäs, J. Chem. Phys. 123, 204718 (2005)

    Article  ADS  Google Scholar 

  53. M. Hussein, K.R. Mahmoud, M.F.O. Hameed, S.S.A. Obayya, J. Photon. Energy 8, 1 (2017)

    Article  Google Scholar 

  54. Y.M. El-Toukhy, M. Hussein, M.F.O. Hameed, S.S.A. Obayya, Plasmonics 13, 503 (2018)

    Article  Google Scholar 

  55. Y.M. El-Toukhy, M. Hussein, M.F.O. Hameed, A.M. Heikal, M.M. Abd-Elrazzak, S.S.A. Obayya, Opt. Express 24, A1107 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Farhat O. Hameed or S. S. A. Obayya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-ghandour, A., Hameed, M.F.O., Awed, A.S. et al. Optical and electrical properties of nanostructured N,N′-diphenyl-N,N′-di-p-tolylbenzene-1,4-diamine organic thin films. Appl. Phys. A 124, 543 (2018). https://doi.org/10.1007/s00339-018-1966-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1966-x

Navigation