Skip to main content
Log in

Processing, dielectric and electrical characteristics of strontium-modified Ca1Cu3Ti4O12

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 10 August 2018

This article has been updated

Abstract

In the present paper, the strontium (Sr)-modified Ca1Cu3Ti4O12 ceramic (further termed as CSCTO) has been fabricated by a conventional cost-effective ceramic route. The prepared sample is characterized to obtain the relationship between the structural and electrical properties in a wide frequency (103–106 Hz) and temperature (25–315 °C) ranges. X-ray diffraction spectra depict a single-phase formation of the compound, crystallized in the cubic system. The dielectric relaxation mechanism and electrical properties of CSCTO have been revealed by studying frequency and temperature dependence of dielectric parameters (εr and tanδ) by dielectric and impedance spectroscopy. The temperature-dependant dielectric constant plots depict that at frequency 1 kHz, the compound has very high dielectric constant (order of 104) and relatively low tangent loss. The occurrence of ultra high dielectric constant of the compound may be due to the space charge polarization, interface and Maxwell–Wagner dielectric relaxation around low frequencies and high-temperature range. The contributions of grains in resistive and capacitive properties of the material can be obtained from the Nyquist plot. It is interesting to note that at room temperature, polarization loop (P ~ E hysteresis loop) of the sintered CSCTO showed lossy behavior. The use of TiO2 and CuO2 nano-sized powders in the starting stage of sample preparation with micron size of CaCO3 and SrCO3 powder promotes the kinetics of quick conventional solid state reaction at a microscopic level, that favors above possible mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 10 August 2018

    Due to a technical error, Fig. 7 in the original article was not displayed completely.

References

  1. M. Ahmadipour, M.F. Ain, Z.A. Ahmad, Nano-Micro Lett. 8, 291–311 (2016)

    Article  Google Scholar 

  2. R. Schmidt, D.C. Sinclair, Chem. Mater. 22, 6–8 (2010)

    Article  Google Scholar 

  3. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313–3323 (2012)

    Article  Google Scholar 

  4. W. Dong, W. Hu, A. Berlie, K. Lau, H. Chen, R.L. Withers, Y. Liu, ACS Appl. Mater. Interfaces. 7, 25321–25325 (2015)

    Article  Google Scholar 

  5. Y. Song, X. Wang, X. Zhang, Y. Sui, Y. Zhang, Z. Liu, Z. Lv, Y. Wang, P. Xu, B. Song, J. Mater. Chem. C 4, 6798–6805 (2016)

    Article  Google Scholar 

  6. W.C. Ribeiro, E. Joanni, R. Savu, P.R. Bueno, Solid State Commun. 151, 173–176 (2011)

    Article  ADS  Google Scholar 

  7. A.R. West, T.B. Adams, F.D. Morrison, D.C. Sinclair, J. Eur. Ceram. Soc. 24, 1439–1448 (2004)

    Article  Google Scholar 

  8. G. Deng, N. Xanthopoulos, P. Muralt, Appl. Phys. Lett. 92, 172909 (2008)

    Article  ADS  Google Scholar 

  9. L. Wu, Y. Zhu, S. Park, S. Shapiro, G. Shirane, J. Tafto, Phys. Rev. B 71, 014118 (2005)

    Article  ADS  Google Scholar 

  10. I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, J. Appl. Phys. 93, 4130 (2003)

    Article  ADS  Google Scholar 

  11. L. Liu, M. Wu, Y. Huang, L. Fang, H. Fan, H. Dammak, M.P. Thi, Mater. Res. Bull. 46, 1467–1472 (2011)

    Article  Google Scholar 

  12. L. Liu, S. Zheng, R. Huang, D. Shi, Y. Huang, S. Wu, Y. Li, L. Fang, C Hu, Adv. Powder Technol. 24, 908–912 (2013)

    Article  Google Scholar 

  13. Y. Zhu, J.C. Zheng, L.W.A.I. Frenkel, J. Hanson, P. Northrup, W. Ku, Phys. Rev. Lett. 99, 037602 (2007)

    Article  ADS  Google Scholar 

  14. S. Sen, R.N.P. Choudhary, A. Tarafdar, P. Pramanik, J. Appl. Phys. 99, 124114 (2006)

    Article  ADS  Google Scholar 

  15. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)

    Article  ADS  Google Scholar 

  16. X. Huang, H. Zhang, M. Wei, Y. Lai, J. Li, J. Alloys Compd. 708, 1026–1032 (2017)

    Article  Google Scholar 

  17. M. Sahu, R.N.P. Choudhary, S. Das, S. Otta, B.K. Roul, J. Mater. Sci. Mater. Electron. 28, 15676–15684 (2017)

    Article  Google Scholar 

  18. J. Zhang, X. Zhang, G. Li, W. Li, C. Kang, X. Zhao, H. Lu, Z. Bo, J. Mater. Chem. C 3, 9670–9677 (2015)

    Article  Google Scholar 

  19. P. Thongbai, J. Jumpatam, T. Yamwong, S. Maensiri, J. Eur. Ceram. Soc. 32, 2423–2430 (2012)

    Article  Google Scholar 

  20. M.A. Sulaimain, S.D. Hutagalung, M.F. Ain, Z.A. Ahmad, J. Alloys Compd. 493, 486–492 (2010)

    Article  Google Scholar 

  21. P.P. Rout, S.K. Pradhan, B.K. Roul, Phys. B 407, 2072–2077 (2012)

    Article  ADS  Google Scholar 

  22. L. Sun, Z. Wang, Y. Shi, E. Cao, Y. Zhang, H. Peng, L. Ju, Ceram. Int. 41, 13486–13492 (2015)

    Article  Google Scholar 

  23. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  ADS  Google Scholar 

  24. H. Xue, X. Guan, R. Yu, Z. Xiong, J. Alloy. Compd. 482, L14–L17 (2009)

    Article  Google Scholar 

  25. X. Huang, H. Zhang, M. Wei, Y. Lai, J. Li, J. Alloy. Compd. 708, 1026–1032 (2017)

    Article  Google Scholar 

  26. C.G. Koop, Phys. Rev. B 83, 121–124 (1951)

    Article  ADS  Google Scholar 

  27. R.P. Pawar, V. Puri, Ceram. Int. 40, 10423–10430 (2014)

    Article  Google Scholar 

  28. U.C. Chung, C. Elissalde, S. Mornet, M. Maglione, C. Estournes, Appl. Phys. Lett. 94, 072903 (2009)

    Article  ADS  Google Scholar 

  29. K. Parida, S.K. Dehury, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 11211–11219 (2016)

    Article  Google Scholar 

  30. Y.J. Li, X.M. Chen, R.Z. Hou, Y.H. Tang, Solid-State Commun. 137, 120 (2006)

    Article  ADS  Google Scholar 

  31. C.F. Yang, Japnese J. Appl. Phys. 35, 1806 (1996)

    Article  ADS  Google Scholar 

  32. P. Ganguly, S. Devi, A.K. Jha, K.L. Deori, Ferroelectrics 381, 111–119 (2009)

    Article  Google Scholar 

  33. V. Purohit, R. Padhee, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 5224–5232 (2018)

    Article  Google Scholar 

  34. E. Mostafavi, A. Ataie, M. Ahmadzadeh, M. Palizdar, T.P. Comyn, A.J. Bell, Mater. Chem. Phys. 162, 106–112 (2015)

    Article  Google Scholar 

  35. J.T. Graham, G.L. Brennecka, P. Ferreira, L. Small, D. Duquette, C. Apblett, S. Landsberger, J.F. Ihlefeld, J. Appl. Phys. 113, 124104 (2013)

    Article  ADS  Google Scholar 

  36. B. Behera, P. Nayak, R.N.P. Choudhary, Mater. Res. Bull. 43, 401–410 (2008)

    Article  Google Scholar 

  37. M. Ram, J. Alloy. Compd. 509, 1744–1748 (2011)

    Article  Google Scholar 

  38. A.R. James, K. Srinivas, Mater. Res. Bull. 34, 1301 (1999)

    Article  Google Scholar 

  39. S. Sahoo, S. Hajra, M. De, R.N.P. Choudhary, Ceram. Int. 44, 4719–4726 (2017)

    Article  Google Scholar 

  40. L. Liu, D. Shi, S. Zheng, Y. Huang, S. Wu, Y. Li, L. Fang, C. Hu, Mater. Chem. Phys. 139, 3844–3850 (2013)

    Article  Google Scholar 

  41. Y. Huang, L. Liu, D. Shi, S.S. Wu, S. Zheng, L. Fang, C. Hu, B. Elouadid, Ceram. Int. 39, 6063–6068 (2013)

    Article  Google Scholar 

  42. J. Rout, B.N. Parida, P.R. Das, R.N.P. Choudhary, J. Electron. Mater. 43, 732–739 (2014)

    Article  ADS  Google Scholar 

  43. P. Gupta, R. Padhee, P.K. Mahapatra, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 17344–17353 (2017)

    Article  Google Scholar 

  44. B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226–232 (2007)

    Article  Google Scholar 

  45. S. Hajra, S. Sahoo, R. Das, R.N.P. Choudhary, J. Alloy. Compd. 750, 507–514 (2018)

    Article  Google Scholar 

  46. M.A.L. Nobre, S.J. Langfredi, J. Phys. Chem. Solids 62, 1999–2006 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

MS like to express gratitude to the Director, Institute of Materials Science, Bhubaneswar, Odisha, India for providing the experimental facilities. The authors also acknowledge Mr.Sugato Hajra, ITER, Siksha O Anusandhan University and Mr. M. S. Beg, IMS for the experimental help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusmita Sahu.

Additional information

The original version of this article was revised: due to a technical error, Figure 7 in the original article was not displayed completely.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, M., Mitra, A., Choudhary, R.N.P. et al. Processing, dielectric and electrical characteristics of strontium-modified Ca1Cu3Ti4O12. Appl. Phys. A 124, 533 (2018). https://doi.org/10.1007/s00339-018-1952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1952-3

Navigation