Skip to main content
Log in

The design and performance of the nano-carbon based double layers flexible coating for tunable and high-efficiency microwave absorption

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocarbon-based materials are outstanding microwave absorbers with good dielectric properties. In this study, double-layer silicone resin flexible absorbing coatings, composed of carbon-coated nickel nanoparticles (Ni@C) and carbon nanotubes (CNTs), with low loading and a total thickness of 2 mm, were prepared. The reflection loss (RL) of the double-layer absorbing coatings has measured for frequencies between 2 and 18 GHz using the Arch reflecting testing method. The effects of the thickness and electromagnetic parameters of each layer and of the layer sequence on the absorbing properties were investigated. It is found that the measured bandwidth (RL ≤ − 10 dB) of the optimum double-layer structure in our experiment range achieves 3.70 GHz. The results indicated that the double coating structure composed of different materials has greater synergistic absorption effect on impedance matching than that of same materials with different loading. The maximum RL of S1 (5 wt% CNTs)/S3 (60 wt% Ni@C) double-layer absorbing coating composed of different materials (S1 and S3) was larger than the one achieved using either S1 or S3 alone with the same thickness. This was because double-layer coating provided a suitable matching layer and improve the interfacial impedance. It was also shown that absorbing peak value and frequency position can be adjusted by double-layer coating structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Khurram, S.A. Ali, Rakha et al., Optimization of the carbon coating of honeycomb cores for broadband microwave absorption. IEEE T. Electromagn. C. 56, 1061 (2014)

    Article  Google Scholar 

  2. S.C. Zhao, Z. Gao, C.Q. Chen et al., Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 98, 196 (2016)

    Article  Google Scholar 

  3. X.Y. Lu, Y.Z. Wu, H.Y. Cai et al., Fe3O4 nanopearl decorated carbon nanotubes stemming from carbon onions with self-cleaning and microwave absorption properties. RSC Adv. 5, 54175 (2015)

    Article  Google Scholar 

  4. J.A. Roberts, T. Imholt, Z. Ye et al., Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe. J. Appl. Phys. 95, 4352 (2004)

    Article  ADS  Google Scholar 

  5. R. Andrews, D. Jacques, D. Qian et al., Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 39(11), 1681 (2001)

    Article  Google Scholar 

  6. H.Y. Zhang, G.X. Zeng, Y. Ge et al., Electromagnetic characteristic and microwave absorption properties of carbon nanotubes/epoxy composites in the frequency range from 2 to 6 GHz. J. Appl. Phys. 105, 054314 (2009)

    Article  ADS  Google Scholar 

  7. R.C. Che, C.Y. Zhi, C.Y. Liang et al., Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88, 033105 (2006)

    Article  ADS  Google Scholar 

  8. X.C. Gui, W. Ye, J.Q. Wei et al., Optimization of electromagnetic matching of Fe-filled carbon nanotubes/ferrite composites for microwave absorption. J. Phys. D Appl. Phys. 42, 075002 (2009)

    Article  ADS  Google Scholar 

  9. H.L. Xing, Z.F. Liu, L. Lin et al., Excellent microwave absorption properties of Fe ion-doped SnO2/multi-walled carbon nanotube composites. RSC Adv. 6, 41656 (2016)

    Article  Google Scholar 

  10. F. Movassagh-Alangh, A.B. Khiabani, H. Salimkhani, Improvement in magnetic and microwave absorption properties of nano-Fe3O4@ CFs composites using a modified multi-step EPD process. Appl. Surf. Sci. 420, 726 (2017)

    Article  ADS  Google Scholar 

  11. H. Wang, H.H. Guo, Y.Y. Dai et al., Optimal electromagnetic-wave absorption by enhanced dipole polarization in Ni/C nanocapsules. Appl. Phys. Lett. 101, 083116 (2012)

    Article  ADS  Google Scholar 

  12. N.D. Wu, X.G. Liu, C.Y. Zhao et al., Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. J. Alloys Compd. 656, 628 (2016)

    Article  Google Scholar 

  13. Y.X. Huang, H.Y. Zhang, G.X. Zeng et al., The microwave absorption properties of carbon-encapsulated nickel nanoparticles/silicone resin flexible absorbing material. J. Alloy. Compd. 682, 138 (2016)

    Article  Google Scholar 

  14. T.T. Wang, C.A. Xu, Wang et al., Microwave absorption properties of C/(C@CoFe) hierarchical core-shell spheres synthesized by using colloidal carbon spheres as templates. Ceram. Int. 42, 9178 (2016)

    Article  Google Scholar 

  15. Z.J. Wang, L.N. Wu, J.G. Zhou et al., Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole x-band microwave absorption. Nanoscale 6, 12298 (2014)

    Article  ADS  Google Scholar 

  16. M.S. Cao, J. Zhu, J. Yuan et al., Computation design and performance prediction towards a multi-layer microwave absorber. Mater. Des. 23, 557 (2002)

    Article  Google Scholar 

  17. J. Yuan, G. Xiao, M.S. Cao et al., A novel method of computation and optimization for multi-layered radar absorbing coatings using open source software. Mater. Des. 27, 45 (2006)

    Article  Google Scholar 

  18. L.Y. Chen, Y.P. Duan, L.D. Liu et al., Influence of SiO2 fillers on microwave absorption properties of carbonyl iron/carbon black double-layer coatings. Mater. Des. 32, 570 (2011)

    Article  Google Scholar 

  19. Y. Naito, K. Suetake, Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans. Microw. Theory Tech. 19, 65 (1971)

    Article  ADS  Google Scholar 

  20. A.N. Yusoff, M.H. Abdullah, A.A. Mansor, S.A.A. Hamid, J. Appl. Phys. 92, 876 (2002)

    Article  ADS  Google Scholar 

  21. P. Li, C.G. Wang, W. Wang et al., Electromagnetic wave absorption properties of composites with micro-sized magnetic particles dispersed in amorphous carbon. J. Magn. Magn. Mater. 365, 40 (2014)

    Article  ADS  Google Scholar 

  22. Y.C. Qing, W.C. Zhou, F. Luo et al., Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resincoatings. J. Magn. Magn. Mater. 321, 25 (2009)

    Article  ADS  Google Scholar 

  23. S. Xie, Z.J. Ji, Y. Yang et al., Layered gypsum-based composites with grid structures for S-band electromagnetic wave absorption. Compos. Struct. 180, 513 (2017)

    Article  Google Scholar 

  24. H.L. Lv, Y.H. Guo, G.L. Wu et al., Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. In. 9, 5660 (2017)

    Article  Google Scholar 

  25. L.J. Deng, M.G. Han, Microwave absorbing performances of multiwalled carbon nanotubes composites with negative permeability. Appl. Phys. Lett. 91, 023119 (2007)

    Article  ADS  Google Scholar 

  26. J.H. Wu, L.B. Kong, High microwave permittivity of multiwalled carbon nanotube composites. Appl. Phys. Lett. 84, 4956 (2004)

    Article  ADS  Google Scholar 

  27. Z. Ye, W.D. Deering, A. Krokhin et al., Microwave absorption by an array of carbon nanotubes, A phenomenological model. Phys. Rev. B 74, 075425–075421 (2006)

    Article  ADS  Google Scholar 

  28. M. Vazquez, Prato et al., Carbon nanotubes and microwaves, interactions, responses, and applications. ACS Nano 3, 3819 (2009)

    Article  Google Scholar 

  29. M.A. Farid, A. Bordbar-Khiabani, A. Ahangari-Asl, “Three-phase PANI@ nano-Fe3O4@ CFs heterostructure: Fabrication, characterization and investigation of microwave absorption and EMI shielding of PANI@ nano-Fe3O4@ CFs/epoxy hybrid composite. Compos Sci. Techn. 150, 65 (2017)

    Article  Google Scholar 

  30. X.M. Zhang, G.B. Ji, W. Liu et al., A novel Co/TiO2 nanocomposite derived from a metal-organic framework: synthesis and efficient microwave absorption. J. Mater. Chem. C, 4, 1860 (2016)

    Article  Google Scholar 

  31. X.F. Zhang, Y. Rao, J.J. Guo et al., Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption. Carbon 96, 972 (2016)

    Article  Google Scholar 

  32. X.G. Liu, J.J. Jiang, D.Y. Geng et al., Dual nonlinear dielectric resonance and strong natural resonance in Ni/ZnO nanocapsules. Appl. Phys. Lett. 94(5), 053119 (2009)

    Article  ADS  Google Scholar 

  33. Y.P. Sun, X.G. Liu, C. Feng et al., A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber. J. Alloy. Compd. 586, 688 (2014)

    Article  Google Scholar 

  34. D.F. Zhang, Z.F. Hao, B. Zeng et al., The theoretical calculation and experiment for microwave electromagnetic property of Ni(C) nanocapsules. Chin. Phys. B 25, 040201 (2016)

    Article  Google Scholar 

  35. W. Liu, Q.W. Shao, G.B. Ji et al., Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Technology Program of Guangdong Province of China (Grant nos: 2016A020221031, 2017B050504004), and by the Science and Technology Program of Guangzhou City of China (Grant nos: 201604030040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danfeng Zhang or Zhifeng Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Hao, Z., Qian, Y. et al. The design and performance of the nano-carbon based double layers flexible coating for tunable and high-efficiency microwave absorption. Appl. Phys. A 124, 374 (2018). https://doi.org/10.1007/s00339-018-1773-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1773-4

Navigation