Skip to main content
Log in

Polymer–electrolyte-gated nanowire synaptic transistors for neuromorphic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polymer–electrolytes are formed by dissolving a salt in polymer instead of water, the conducting mechanism involves the segmental motion-assisted diffusion of ion in the polymer matrix. Here, we report on the fabrication of tin oxide (SnO2) nanowire synaptic transistors using polymer–electrolyte gating. A thin layer of poly(ethylene oxide) and lithium perchlorate (PEO/LiClO4) was deposited on top of the devices, which was used to boost device performances. A voltage spike applied on the in-plane gate attracts ions toward the polymer–electrolyte/SnO2 nanowire interface and the ions are gradually returned after the pulse is removed, which can induce a dynamic excitatory postsynaptic current in the nanowire channel. The SnO2 synaptic transistors exhibit the behavior of short-term plasticity like the paired-pulse facilitation and self-adaptation, which is related to the electric double-effect regulation. In addition, the synaptic logic functions and the logical function transformation are also discussed. Such single SnO2 nanowire-based synaptic transistors are of great importance for future neuromorphic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski, M. Aono, Nat. Mater. 10, 591 (2011)

    Article  ADS  Google Scholar 

  2. D. Kuzum, R.G.D. Jeyasingh, S. Yu, H.-S.P. Wong, IEEE Trans. Electron Dev. 59, 3489 (2012)

    Article  ADS  Google Scholar 

  3. S.G. Hu, Y. Liu, T.P. Chen, Z. Liu, Q. Yu, L.J. Deng, Y. Yin, S. Hosaka, Appl. Phys. Lett. 102, 183510 (2013)

    Article  ADS  Google Scholar 

  4. S. Song, K.D. Miller, L.F. Abbott, Nat. Neurosci. 3, 919 (2000)

    Article  Google Scholar 

  5. G. Zhu, X. Gao, Y. Li, J. Yuan, W. Yuan, Y. Yang, Z. Zhang, Y. Wang, IEEE Electron Dev. Lett. 38, 71 (2017)

    Article  ADS  Google Scholar 

  6. S. Kim, B. Choi, J. Yoon, H.-D. Kim, S.-J. Choi, ACS Appl. Mater. Interfaces 7, 25479 (2015)

    Article  Google Scholar 

  7. C. Qian, J. Sun, L. Kong, G. Gou, J. Yang, J. He, Y. Gao, Q. Wan, ACS Appl. Mater. Interfaces 8, 26169 (2016)

    Article  Google Scholar 

  8. D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, Nature 529, 484 (2016)

    Article  ADS  Google Scholar 

  9. R. Taormina, K.-W. Chau, J. Hydrol. 529, 1617 (2015)

    Article  ADS  Google Scholar 

  10. J. Zhang, K.-W. Chau, J. Univ. Comput. Sci. 15, 840 (2009)

    Google Scholar 

  11. W. Wang, K.-W. Chau, D. Xu, X.-Y. Chen, Water Resour. Manag. 29, 2655 (2015)

    Article  Google Scholar 

  12. Y. Bicer, I. Dincer, M. Aydin, Energy 116, 1205 (2016)

    Article  Google Scholar 

  13. C.L. Wu, K.W. Chau, C. Fan, J. Hydrol. 389, 146 (2010)

    Article  ADS  Google Scholar 

  14. T. Chang, S.-H. Jo, W. Lu, ACS Nano 5, 7669 (2011)

    Article  Google Scholar 

  15. M.D. Pickett, G. Medeiros-Ribeiro, R.S. Williams, Nat. Mater. 12, 114 (2013)

    Article  ADS  Google Scholar 

  16. Z.Q. Wang, H.Y. Yu, X.H. Li, H. Yu, Y.C. Liu, X.J. Zhu, Adv. Funct. Mater. 22, 2579 (2012)

    Google Scholar 

  17. S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, H.-S.P. Wong, Adv. Mater. 25, 1774 (2013)

    Article  Google Scholar 

  18. R. Pan, J. Li, F. Zhuge, L. Zhu, L. Liang, H. Zhang, J. Guo, H. Cao, B. Fu, K. Li, Appl. Phys. Lett. 108, 013504 (2016)

    Article  ADS  Google Scholar 

  19. Q. Lai, L. Zhang, Z. Li, W.F. Stickle, R.S. Williams, Y. Chen, Adv. Mater. 22, 2448 (2010)

    Article  Google Scholar 

  20. K. Kim, C.-L. Chen, Q. Truong, A.M. Shen, Y. Chen, Adv. Mater. 25, 1693 (2013)

    Article  Google Scholar 

  21. L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Nat. Commun. 5, 3158 (2014)

    ADS  Google Scholar 

  22. Y.H. Liu, L.Q. Zhu, P. Feng, Y. Shi, Q. Wan, Adv. Mater. 27, 5599 (2013)

    Article  Google Scholar 

  23. J. Shi, S.D. Ha, Y. Zhou, F. Schoofs, S. Ramanathan, Nat. Commun. 4, 2676 (2013)

    ADS  Google Scholar 

  24. P. Gkoupidenis, N. Schaefer, B. Garlan, G.G. Malliaras, Adv. Mater. 27, 7176 (2015)

    Article  Google Scholar 

  25. P. Gkoupidenis, N. Schaefer, X. Strakpsas, J.A. Fairfield, G.G. Malliaras, Appl. Phys. Lett. 107, 263302 (2015)

    Article  ADS  Google Scholar 

  26. G. Gou, J. Sun, C. Qian, Y. He, L. Kong, Y. Fu, G. Dai, J. Yang, Y. Gao, J. Mater. Chem. C 4, 11110 (2016)

    Article  Google Scholar 

  27. P.B. Pillai, M.M.D. Souza, A.C.S. Appl, Mater. Interfaces 9, 1609 (2017)

    Article  Google Scholar 

  28. R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J.-P. Bonnet, T.N.T. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, M. Armand, Nat. Mater. 12, 452 (2013)

    Article  ADS  Google Scholar 

  29. J. Rodríguez, E. Navarrete, E.A. Dalchiele, L. Sánchez, J.R. Ramos-Barrado, F. Martin, J. Power Sour. 237, 270 (2013)

    Article  Google Scholar 

  30. C. Lu, Q. Fu, S. Huang, J. Liu, Nano Lett. 4, 623 (2004)

    Article  ADS  Google Scholar 

  31. G.P. Siddons, D. Merchin, J.H. Back, J. Kyeong, M. Shim, Nano Lett. 4, 927 (2004)

    Article  ADS  Google Scholar 

  32. M.J. Panzer, C.D. Frisbie, J. Am. Chem. Soc. 127, 6960 (2006)

    Article  Google Scholar 

  33. E. Lhuillier, A. Robin, S. Ithurria, H. Aubin, B. Dubertret, Nano Lett. 14, 2715 (2014)

    Article  ADS  Google Scholar 

  34. L. Kong, J. Sun, C. Qian, G. Gou, Y. He, J. Yang, Y. Gao, Org. Electron. 39, 64 (2016)

    Article  Google Scholar 

  35. C. Qian, L. Kong, J. Yang, Y. Gao, J. Sun, Appl. Phys. Lett. 110, 083302 (2017)

    Article  ADS  Google Scholar 

  36. G. Wang, S. Chu, N. Zhan, H. Zhou, J. Liu, Appl. Phys. A Mater. 103, 951 (2011)

    Article  ADS  Google Scholar 

  37. Q. Hu, H. Wu, J. Sun, D. Yan, Y. Gao, J. Yang, Nanoscale 8, 5350 (2016)

    Article  ADS  Google Scholar 

  38. G. Gou, G. Dai, C. Qian, Y. Liu, Y. Fu, Z. Tian, Y. He, L. Kong, J. Yang, Y. Gao, Nanoscale 8, 1540 (2016)

    Article  Google Scholar 

  39. F. Liu, C. Qian, J. Sun, P. Liu, Y. Huang, Y. Gao, J. Yang, Appl. Phys. A Mater. 122, 311 (2016)

    Article  ADS  Google Scholar 

  40. F. Liu, J. Sun, C. Qian, X. Hu, H. Wu, Y. Huang, J. Yang, Appl. Phys. A Mater. 122, 841 (2016)

    Article  ADS  Google Scholar 

  41. S. Ju, K. Lee, M.-H. Yoon, A. Facchetti, T.J. Marks, D.B. Janes, Nanotechnology 18, 155201 (2007)

    Article  ADS  Google Scholar 

  42. H.K. Li, T.P. Chen, P. Liu, S.G. Hu, Y. Liu, Q. Zhang, P.S. Lee, J. Appl. Phys. 119, 244505 (2016)

    Article  ADS  Google Scholar 

  43. A.L. Fairhall, G.D. Lewen, W. Bialek, R.R.D.R. van Steveninck, Nature 412, 787 (2001)

    Article  ADS  Google Scholar 

  44. C.J. Wan, Y.H. Liu, P. Feng, W. Wang, L.Q. Zhu, Z.P. Liu, Y. Shi, Q. Wan, Adv. Mater. 28, 5878 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61306085).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Sun or Guang-hua Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, C., Sun, J., Gou, G. et al. Polymer–electrolyte-gated nanowire synaptic transistors for neuromorphic applications. Appl. Phys. A 123, 597 (2017). https://doi.org/10.1007/s00339-017-1218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1218-5

Navigation