Skip to main content
Log in

Microwave plasma-assisted ALD of Al2O3 thin films: a study on the substrate temperature dependence of various parameters of interest

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study utilizes microwave plasma-assisted atomic layer deposition (MPALD) in remote mode to deposit Al2O3 thin films with increased growth per cycle (GPC). Optical emission spectroscopy (OES) was used to identify the plasma configuration in the ALD chamber. MPALD–Al2O3 thin films were deposited at temperatures ranging from room temperature to 200 °C and the electrical parameters were investigated with Al/Al2O3/p–Si metal oxide semiconductor (MOS) structures. A GPC of 0.24 nm was observed for the films deposited at room temperature. The fixed oxide charge densities (N fix) in all films were of the order of 1012 cm−2. The interface state density (D it) exhibited a distinct minimum for the films deposited at 100 °C. The dependence of built-in voltage, N fix, and D it on Al2O3 deposition temperature was investigated. This can be used as a measure of the electrical applicability of these thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Kim, H.-B.-R. Lee, W.-J. Maeng, Thin Solid Films 517, 2563 (2009)

    Article  ADS  Google Scholar 

  2. M. Knez, K. Nielsch, L. Niinistö, Adv. Mater. 19, 3425 (2007)

    Article  Google Scholar 

  3. R.W. Johnson, A. Hultqvist, S.F. Bent, Mater. Today 17, 236 (2014)

    Article  Google Scholar 

  4. D.H. Levy, S.F. Nelson, J. Vac. Sci. Technol. A 30, 018501 (2012)

    Article  Google Scholar 

  5. G. Dingemans, W.M.M. Kessels, J. Vac. Sci. Technol. A 30, 040802 (2012)

    Article  Google Scholar 

  6. P. Poodt, D.C. Cameron, E. Dickey, S.M. George, V. Kuznetsov, G.N. Parsons, G. Sundaram, A. Vermeer, D.C. Cameron, E. Dickey, S.M. George, F. Roozeboom, G. Sundaram, Ad. Vermeer, J. Vac. Sci. Technol. A 30, 010802 (2012)

    Article  Google Scholar 

  7. D.M. King, J.A. Spencer II, X. Liang, L.F. Hakim, A.W. Weimer, Surf. Coat. Technol. 201, 9163 (2007)

    Article  Google Scholar 

  8. S.E. Potts, W.M.M. Kessels, Coord. Chem. Rev. 257, 3254 (2013)

    Article  Google Scholar 

  9. H. Kim, J.T. Lee, D.-C. Lee, A. Magasinski, W. I. Cho, G. Yushin, Adv. Energy Mater. 3, 1308 (2013)

    Article  Google Scholar 

  10. H. Kim, Thin Solid Films 519, 6639 (2011)

    Article  ADS  Google Scholar 

  11. H. Kim, II.-K. Oh, Jpn. J. Appl. Phys. 53, 03DA01 (2014)

    Article  Google Scholar 

  12. S.-C. Ha, E. Choi, S.-H. Kim, S.J. Roh. Thin Solid Films 476, 252 (2005)

    Article  ADS  Google Scholar 

  13. K.Y. Cheong, J.H. Moon, D. Eom, H.J. Kim, W. Bahng, N.-K. Kim, Electrochem. Solid State Lett. 10, H69 (2007)

    Article  Google Scholar 

  14. T. Nabatame, A. Ohi, K. Ito, M. Takahashi, T. Chikyo, J. Vac. Sci. Technol. A 33, 01A118 (2015)

    Article  Google Scholar 

  15. A.K. Roy, J. Dendooven, D. Deduytsche, K. Devloo-Casier, K. Ragaert, L. Cardon, C. Detavernier, Chem. Commun. 51, 3556 (2015)

    Article  Google Scholar 

  16. N.Y. Garces, D.J. Meyer, V.D. Wheeler, Z. Liliental-Weber, D.K. Gaskill, C.R. Eddy Jr., J. Vac. Sci. Technol. B 32, 03D101 (2014)

    Article  Google Scholar 

  17. S.B.S. Heil, J.L. Van Hemmen, M.C.M. Van De Sanden, W.M.M. Kessels, J. Appl. Phys. 103, 103302 (2008)

    Article  ADS  Google Scholar 

  18. Y. Xiong, L. Sang, Q. Chen, L. Yang, Z. Wang, Z. Liu, Plasma Sci. Technol. 15, 52 (2013)

    Article  ADS  Google Scholar 

  19. W.-S. Kim, D.-Y. Moon, B.-W. Kang, J.-W. Park, J.-G. Park, J. Korean Phys. Soc. 55, 55 (2009)

    Article  ADS  Google Scholar 

  20. M.D. Halls, K. Raghavachari, J. Phys. Chem. B 108, 4058 (2004)

    Article  Google Scholar 

  21. A. Niskanen, A. Rahtu, T. Sajavaara, K. Arstila, M. Ritala, M. Leskelä, J. Electrochem. Soc. 152, G25 (2005)

    Article  Google Scholar 

  22. J. W. Lim, S. J. Yun, Solid State Lett. 7, F45 (2004)

    Article  Google Scholar 

  23. M. Cho, H.B. Park, J. Park, S.W. Lee, C.S. Hwang, J. Jeong, H.S. Kang, Y.W. Kim, J. Electrochem. Soc. 152, F49 (2005)

    Article  Google Scholar 

  24. K. Henkel, H. Gargouri, B. Gruska, M. Arens, M. Tallarida, D. Schmeißer, J. Vac. Sci. Technol. A 32, 01A107 (2014)

    Article  Google Scholar 

  25. J. Haeberle, K. Henkel, H. Gargouri, F. Naumann, B. Gruska, M. Arens, M. Tallarida, D. Schmeißer, Beilstein J. Nanotechnol. 4, 732 (2013)

    Article  Google Scholar 

  26. A. Lofthus, P.H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977)

    Article  ADS  Google Scholar 

  27. Y. Fukuda, H. Ishizaki, Y. Otani, C. Yamamoto, J. Yamanaka, T. Sato, T. Takamatsu, H. Okamoto, H. Narita, Appl. Phys. Lett. 102, 132904 (2013)

    Article  ADS  Google Scholar 

  28. L. Zhang, H.C. Jiang, C. Liu, J.W. Dong, P. Chow, J. Phys. D Appl. Phys. 40, 3707 (2007)

    Article  ADS  Google Scholar 

  29. D.A. Muller, G.D. Wilk, Appl. Phys. Lett. 79, 4195 (2001)

    Article  ADS  Google Scholar 

  30. F. Giustino, P. Umari, A. Pasquarello, Microelectron. Eng. 72, 299 (2004)

    Article  Google Scholar 

  31. T. O. Kääriäinen, D.C. Cameron, Plasma Process. Polym. 6, S237 (2009)

    Article  Google Scholar 

  32. M.D. Groner, F.H. Fabreguette, J.W. Elam, S.M. George, Chem. Mater. 16, 639 (2004)

    Article  Google Scholar 

  33. J. Tao, C.Z. Zhao, C. Zhao, P. Taechakumput, M. Werner, S. Taylor, P.R. Chalker, Materials 5, 1005 (2012)

    Article  ADS  Google Scholar 

  34. W. Luo, T. Yuan, Y. Kuo, J. Lu, J. Yan, W. Kuo, Appl. Phys. Lett. 89, 072901 (2006)

    Article  ADS  Google Scholar 

  35. J. Szatkowski, K. Sierański, Solid State Electron. 35, 1013 (1992)

    Article  ADS  Google Scholar 

  36. M.M. Bülbül, S. Zeyrek, Microelectron. Eng. 83, 2522 (2006)

    Article  Google Scholar 

  37. J.R. Weber, A. Janotti, C.G. Van de Walle, J. Appl. Phys. 109, 033715 (2008)

    Article  ADS  Google Scholar 

  38. E.H. Nicollian, A. Goetzberger, Appl. Phys. Lett. 7, 216 (1965)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Indian Nanoelectronics Users Program (INUP), IIT Bombay. Two of the authors would like to acknowledge University Grants Commission (UGC) for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subin Thomas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, S., Nalini, S. & Kumar, K.R. Microwave plasma-assisted ALD of Al2O3 thin films: a study on the substrate temperature dependence of various parameters of interest. Appl. Phys. A 123, 185 (2017). https://doi.org/10.1007/s00339-017-0830-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0830-8

Keywords

Navigation