Skip to main content
Log in

Laser-induced periodic surface structures of thin, complex multi-component films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Femtosecond laser-induced regular nanostructures are generated on a complex multilayer target, namely a piece of a commercial, used hard disk memory. It is shown that after single-shot 800-nm irradiation at 0.26 J/cm2 only the polymer cover layer and—in the center—a portion of the magnetic multilayer are ablated. A regular array of linearly aligned spherical 450-nm features at the uncovered interface between cover and magnetic layers appears not to be produced by the irradiation. Only after about 10 pulses on one spot, classical ripples perpendicular to the laser polarization with a period of ≈700 nm are observed, with a modulation between 40 nm above and 40 nm below the pristine surface and an ablation depth only slightly larger than the thickness of the multilayer magnetic film. Further increase of the pulse number does not result in deeper ablation. However, 770-nm ripples become parallel to the polarization and are swelling to more than 120 nm above zero, much more than the full multilayer film thickness. In the spot periphery, much shallower 300-nm ripples are perpendicular to the strong modulation and the laser polarization. Irradiation with 0.49-J/cm2 pulses from an ultrafast white-light continuum results—in the spot periphery—in the formation of 200-nm ripples, only swelling above zero after removal of the polymer cover, without digging into the magnetic film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.F. Young, J.S. Preston, H.M. van Driel, J.E. Sipe, Phys. Rev. B 27, 1155 (1983)

    Article  ADS  Google Scholar 

  2. J. Bonse, A. Rosenfeld, J. Krüger, J. Appl. Phys. 106, 104910 (2009)

    Article  ADS  Google Scholar 

  3. J. Reif, O. Varlamova, S. Varlamov, M. Bestehorn, Appl. Phys. A 104, 969–973 (2011)

    Article  ADS  Google Scholar 

  4. S.M. Petrović, B. Gaković, D. Peruško, E. Stratakis, I. Bogdanović-Radović, C. Fotakis, B. Jelenović, J. Appl. Phys. 114, 233108 (2013)

    Article  ADS  Google Scholar 

  5. T.Z. Kosc, A.A. Kozlov, A.W. Schmid, Opt. Express 22, 10921 (2006)

    Article  Google Scholar 

  6. A.G. Kovaĉević, S. Petrović, B. Bokić, B. Gaković, M.T. Bokorov, B. Vasić, R. Gajić, M. Trtica, B.M. Jelenković, Appl. Surf. Sci. 326, 91–98 (2015)

    Article  ADS  Google Scholar 

  7. T.E. Itina, O. Utéza, N. Sanner, M. Sentis, Proc. SPIE 7005, 70050N (2008)

    Article  Google Scholar 

  8. E. Hunger, H. Pietsch, S. Petzoldt, E. Matthias, Appl. Surf. Sci. 54, 227–231 (1992)

    Article  ADS  Google Scholar 

  9. G.L. Hornyak, J.J. Moore, H.F. Tibbals, J. Dutta, Fundamentals of Nanotechnology (CRC Press, Taylor & Francis Group, Boca Raton, 2008)

    Google Scholar 

  10. I.R. McFadyen, E.E. Fullerton, M.J. Carey, MRS Bull. 31, 379 (2008)

    Article  Google Scholar 

  11. F. Garrelie, J.P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, O. Parriaux, Opt. Express 19, 9035 (2011)

    Article  ADS  Google Scholar 

  12. G. Miyaji, K. Miyazaki, Opt. Express 16, 16265 (2008)

    Article  ADS  Google Scholar 

  13. O. Varlamova, C. Martens, M. Ratzke, J. Reif, Appl. Opt. 53, I10–I15 (2014)

    Article  Google Scholar 

  14. J. Reif, O. Varlamova, S. Uhlig, S. Varlamov, M. Bestehorn, Appl. Phys. A 117, 179–184 (2014)

    Article  ADS  Google Scholar 

  15. E. Cuche, P. Marquet, C. Depeursinge, Appl. Opt. 38, 6994 (1999)

    Article  ADS  Google Scholar 

  16. J. Reif, O. Varlamova, F. Costache, Appl. Phys. A 92, 1019 (2008)

    Article  ADS  Google Scholar 

  17. J.-M. Savolainen, M.S. Christensen, P. Balling, Phys. Rev. B 84, 193410 (2011)

    Article  ADS  Google Scholar 

  18. O. Varlamova, F. Costache, M. Ratzke, J. Reif, Appl. Surf. Sci. 253, 7932–7936 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the valuable support from Hans-Michael Krause (IHP) with EDX, Michael Stolz (Fraunhofer MESYS) with DHM, and Juergen Bertram.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Reif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reif, J., Varlamova, O., Ratzke, M. et al. Laser-induced periodic surface structures of thin, complex multi-component films. Appl. Phys. A 122, 338 (2016). https://doi.org/10.1007/s00339-016-9936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9936-7

Keywords

Navigation