Skip to main content
Log in

Low-temperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Low-temperature micro-photoluminescence spectroscopy (μ-PLS) is applied to investigate shallow layers of laser-processed silicon for solar cell applications. Micron-scale measurement (with spatial resolution down to 1 μm) enables investigation of the fundamental impact of laser processing on the electronic properties of silicon as a function of position within the laser-processed region, and in particular at specific positions such as at the boundary/edge of processed and unprocessed regions. Low-temperature μ-PLS enables qualitative analysis of laser-processed regions by identifying PLS signals corresponding to both laser-induced doping and laser-induced damage. We show that the position of particular luminescence peaks can be attributed to band-gap narrowing corresponding to different levels of subsurface laser doping, which is achieved via multiple 248 nm nanosecond excimer laser pulses with fluences in the range 1.5–4 J/cm2 and using commercially available boron-rich spin-on-dopant precursor films. We demonstrate that characteristic defect PL spectra can be observed subsequent to laser doping, providing evidence of laser-induced crystal damage. The impact of laser parameters such as fluence and number of repeat pulses on laser-induced damage is also analyzed by observing the relative level of defect PL spectra and absolute luminescence intensity. Luminescence owing to laser-induced damage is observed to be considerably larger at the boundaries of laser-doped regions than at the centers, highlighting the significant role of the edges of laser-doped region on laser doping quality. Furthermore, by comparing the damage signal observed after laser processing of two different substrate surface conditions (chemically–mechanically polished and tetramethylammonium hydroxide etched), we show that wafer preparation can be an important factor impacting the quality of laser-processed silicon and solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.M. Fairfield, G.H. Schwuttke, Solid-State Electron. 11(12), 1175 (1968)

    Article  ADS  Google Scholar 

  2. E. Fogarassy, R. Stuck, J.J. Grob, P. Siffert, J. Appl. Phys. 52(2), 1076 (1981)

    Article  ADS  Google Scholar 

  3. E. Schneiderlöchner, R. Preu, R. Lüdemann, S.W. Glunz, Prog. Photovolt. Res. Appl. 10(1), 29 (2002)

    Article  Google Scholar 

  4. D. Walter, A. Fell, E. Franklin, D. Wang, K. Fong, T. Kho, K.J. Weber, A.W. Blakers, Sol. Energy Mater. Sol. Cells 136, 1 (2015)

    Article  Google Scholar 

  5. D. Kray, S. Hopman, A. Spiegel, B. Richerzhagen, G.P. Willeke, Sol. Energy Mater. Sol. Cells 91(17), 1638 (2007)

    Article  Google Scholar 

  6. R.M. Swanson, Sol Cells 17(1), 85 (1986)

    Article  ADS  Google Scholar 

  7. S.J. Eisele, T.C. Röder, J.R. Köhler, J.H. Werner, Appl. Phys. Lett. 95(13), 133501 (2009)

    Article  ADS  Google Scholar 

  8. E. Lee, H. Lee, J. Choi, D. Oh, J. Shim, K. Cho, J. Kim, S. Lee, B. Hallam, S.R. Wenham, H. Lee, Sol. Energy Mater. Sol. Cells 95(12), 3592 (2011)

    Article  Google Scholar 

  9. M. Dahlinger, B. Bazer-Bachi, T.C. Roder, J.R. Kohler, R. Zapf-Gottwick, J.H. Werner, IEEE J. Photovolt. 5(3), 812 (2015)

    Article  Google Scholar 

  10. Z. Hameiri, T. Puzzer, L. Mai, A.B. Sproul, S.R. Wenham, Prog. Photovolt. 19(4), 391 (2011)

    Article  Google Scholar 

  11. H.T. Nguyen, Y. Han, M. Ernst, A. Fell, E. Franklin, D. Macdonald, Appl. Phys. Lett. 107(2), 022101 (2015)

    Article  ADS  Google Scholar 

  12. M. Ametowobla, G. Bilger, J.R. Köhler, J.H. Werner, J. Appl. Phys. 111(11), 114515 (2012)

    Article  ADS  Google Scholar 

  13. A. Fell, S. Surve, E. Franklin, K.J. Weber, IEEE Trans. Electron Devices 61(6), 1943 (2014)

    Article  ADS  Google Scholar 

  14. A. Fell, D. Walter, X. Yang, S. Surve, E. Franklin, K.J. Weber, D. MacDonald, Energy Procedia 55, 63 (2014)

    Article  Google Scholar 

  15. M. Tajima, IEEE J. Photovolt. 4(6), 1452 (2014)

    Article  Google Scholar 

  16. P. Gundel, M.C. Schubert, W. Kwapil, J. Schön, M. Reiche, H. Savin, M. Yli-Koski, J.A. Sans, G. Martinez-Criado, W. Seifert, W. Warta, E.R. Weber, Phys. Status. Solidi-R 3(7–8), 230 (2009)

    Article  Google Scholar 

  17. P. Gundel, M.C. Schubert, F. Heinz, R. Woehl, J. Benick, J. Giesecke, D. Suwito, W. Warta, Nanoscale Res. Lett. 6(1), 1 (2011)

    Article  Google Scholar 

  18. H.T. Nguyen, D. Yan, F. Wang, P. Zheng, Y. Han, D. Macdonald, Phys. Status. Solidi-R 9(4), 230 (2015)

    Article  Google Scholar 

  19. J. Wagner, Phys. Rev. B 29(4), 2002 (1984)

    Article  ADS  Google Scholar 

  20. J. Wagner, Phys. Rev. B 32(2), 1323 (1985)

    Article  ADS  Google Scholar 

  21. M. Suezawa, Y. Sasaki, K. Sumino, Phys. Status Solidi A 79(1), 173 (1983)

    Article  ADS  Google Scholar 

  22. R. Sauer, J. Weber, J. Stolz, E.R. Weber, K.H. Küsters, H. Alexander, Appl. Phys. A-Mater. 36(1), 1 (1985)

    Article  ADS  Google Scholar 

  23. N.A. Drozdov, A.A. Patrin, and V.D. Tkachev, Jetp Lett 23 (11) (1976)

  24. M.A. Green, Sol. Energy Mater. Sol. Cells 92(11), 1305 (2008)

    Article  Google Scholar 

  25. H.T. Nguyen, F.E. Rougieux, W. Fan, T. Hoe, D. Macdonald, IEEE J. Photovolt. 5(3), 799 (2015)

    Article  Google Scholar 

  26. M. Tajima, Y. Iwata, F. Okayama, H. Toyota, H. Onodera, T. Sekiguchi, J. Appl. Phys. 111(11), 113523 (2012)

    Article  ADS  Google Scholar 

  27. V.C. Lo, Y.W. Wong, H.C. Cho, Y.Q. Chen, S.M. Ho, P.W. Chan, K.Y. Tong, Semicond. Sci. Technol. 11(9), 1285 (1996)

    Article  ADS  Google Scholar 

  28. O. Akiyoshi, H. Kenji, H. Koyo, N. Yoshiyuki, T. Yu, K. Athapol, F. Takashi, Jpn. Appl. Phys. 48(7R), 071201 (2009)

    Google Scholar 

  29. G. Masetti, M. Severi, S. Solmi, IEEE Trans. Electron Devices 30(7), 764 (1983)

    Article  ADS  Google Scholar 

  30. R.A. Street, N.M. Johnson, J.F. Gibbons, J. Appl. Phys. 50(12), 8201 (1979)

    Article  ADS  Google Scholar 

  31. R.H. Uebbing, P. Wagner, H. Baumgart, H.J. Queisser, Appl. Phys. Lett. 37(12), 1078 (1980)

    Article  ADS  Google Scholar 

  32. I. Yonenaga, T. Taishi, X. Huang, K. Hoshikawa, J. Appl. Phys. 89(10), 5788 (2001)

    Article  ADS  Google Scholar 

  33. M. Akatsuka, K. Sueoka, Jpn. Appl. Phys. 40(3A), 1240 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Australian Government through the Australian Renewable Energy Agency (ARENA), through projects RND009 and the Australian Centre for Advanced Photovoltaics (ACAP). Responsibility for the views, information or advice expressed herein is not accepted by the Australian Government. The authors are in debt to Prof. H. Tan for providing access to the spectroscopic equipment, Prof. B. Luther-Davies and Dr. S. Mokkapati for assisting with the hardware setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Joon Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, YJ., Franklin, E., Fell, A. et al. Low-temperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions. Appl. Phys. A 122, 420 (2016). https://doi.org/10.1007/s00339-016-9926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9926-9

Keywords

Navigation