Skip to main content
Log in

Ba(CoTi)1.22Fe9.56O19 ferrites prepared by sol–gel method and solid-state method techniques

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we synthesized the Co–Ti-substituted barium ferrite materials (Ba(CoTi)1.22Fe9.56O19) by sol–gel method (S1) and solid-state method (S2). The phase formation, structural and magnetic properties of both samples were investigated separately. Differential scanning calorimeter and thermo-gravimetric analysis curves showed changes in energy and weight with respect to temperatures during the sintering process—from room temperature to 1200 °C at a rate of 10 °C per min. X-ray diffractometer patterns indicate that both samples, with Co–Ti ions substitution, had single phase of M-type barium ferrite, and no clear structural changes or formation of second phase was observed. Grain size and shape of samples were exhibited in SEM images, from which S1 showed more regular-shaped particles than S2. Magnetic hysteresis loops of the samples were measured using a vibrating sample magnetometer and showed similar saturation magnetization (M s) and coercivity (H c). M s and H c are mainly determined by electron magnetic moment, ion occupation and particle size. Microwave absorption properties of the samples were characterized by a microwave vector network analyzer in the frequency range of 0.5–18 GHz. In terms of complex magnetic permeability, dielectric permittivity, maximum reflection loss, resonance peak and bandwidth, there were remarkable differences between two samples. We suggested that these different characteristics originate from the variation in particles size, surface state and oxygen vacancies, which determined the interfacial polarization and related microwave absorption performance of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)

    Article  Google Scholar 

  2. D. Xu, F.F. Dong, Y.B. Chen, B.T. Zhao, S.M. Liu, M.O. Tade, Z.P. Shao, Cobalt-free niobium-doped barium ferrite as potential materials of dense ceramic membranes for oxygen separation. J. Membr. Sci. 455, 75–82 (2014)

    Article  Google Scholar 

  3. J.L. Zhang, J.C. Fu, F.S. Li, E.Q. Xie, D.S. Xue, N.J. Mellors, Y. Peng, BaFe12O19 single-particle-chain nanofibers: preparation, characterization, formation principle, and magnetization reversal mechanism. Acs Nano 6, 2273–2280 (2012)

    Article  Google Scholar 

  4. M. Manikandan, C. Venkateswaran, Effect of high energy milling on the synthesis temperature, magnetic and electrical properties of barium hexagonal ferrite. J. Magn. Magn. Mater. 358, 82–86 (2014)

    Article  ADS  Google Scholar 

  5. Y.Y. Meng, M.H. He, Q. Zeng, D.L. Jiao, S. Shukla, R.V. Ramanujan, Z.W. Liu, Synthesis of barium ferrite ultrafine powders by a sol–gel combustion method using glycine gels. J. Alloys Compd. 583, 220–225 (2014)

    Article  Google Scholar 

  6. C.L. Yuan, Y.S. Tuo, Microwave adsorption of Sr(MnTi)(x)Fe12−2x O19 particles. J. Magn. Magn. Mater. 342, 47–53 (2013)

    Article  ADS  Google Scholar 

  7. J. Li, H.W. Zhang, Y.X. Li, Q. Li, G.L. Yu, Effect of La–Zn substitution on the structure and magnetic properties of low temperature Co-fired M-type barium ferrite. J. Supercond. Nov. Magn. 27, 793–797 (2014)

    Article  Google Scholar 

  8. H.M. Khan, M.U. Islam, Y.B. Xu, M.A. Iqbal, I. Ali, Structural and magnetic properties of TbZn-substituted calcium barium M-type nano-structured hexa-ferrites. J. Alloys Compd. 589, 258–262 (2014)

    Article  Google Scholar 

  9. W.J. Zhang, Y. Bai, X. Han, L. Wang, X.F. Lu, L.J. Qiao, Magnetic properties of Co–Ti substituted barium hexaferrite. J. Alloys Compd. 546, 234–238 (2013)

    Article  Google Scholar 

  10. T. Tsutaoka, N. Koga, Magnetic phase transitions in substituted barium ferrites BaFe12−x (Ti0.5Co0.5)(x)O19 (x = 0–5). J. Magn. Magn. Mater. 325, 36–41 (2013)

    Article  ADS  Google Scholar 

  11. E.D. Solov’eva, E.V. Pashkova, A.E. Perekos, B.S. Khomenko, A.G. Belous, Structural and magnetic properties of Ba0.7Sr0.3Fe12−2x Co x Ti x O19 M-type hexaferrites. Inorg. Mater. 49, 621–625 (2013)

    Article  Google Scholar 

  12. I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, Effects of Ga–Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol–gel auto-combustion route. J. Alloys Compd. 547, 118–125 (2013)

    Article  Google Scholar 

  13. Z.F. Zi, Q.C. Liu, J.M. Dai, Y.P. Sun, Effects of Ce–Co substitution on the magnetic properties of M-type barium hexaferrites. Solid State Commun. 152, 894–897 (2012)

    Article  ADS  Google Scholar 

  14. N. Koga, T. Tsutaoka, Preparation of substituted barium ferrite BaFe12−x (Ti0.5Co0.5)(x)O19 by citrate precursor method and compositional dependence of their magnetic properties. J. Magn. Magn. Mater. 313, 168–175 (2007)

    Article  ADS  Google Scholar 

  15. J.X. Qiu, M.Y. Gu, Magnetic nanocomposite thin films of BaFe12O19 and TiO2 prepared by sol–gel method. Appl. Surf. Sci. 252, 888–892 (2005)

    Article  ADS  Google Scholar 

  16. C. Singh, S.B. Narang, I.S. Hudiara, Y. Bai, K. Marina, Hysteresis analysis of Co–Ti substituted M-type Ba–Sr hexagonal ferrite. Mater. Lett. 63, 1921–1924 (2009)

    Article  Google Scholar 

  17. H.W. Zhang, J. Li, H. Su, T.C. Zhou, Y. Long, Z.L. Zheng, Development and application of ferrite materials for low temperature co-fired ceramic technology. Chin. Phys. B 22(117504), 117501–117521 (2013)

    ADS  Google Scholar 

  18. J.J. Liu, C.R. Gong, G.L. Fan, Preparation and properties of barium-ferrite-containing glass ceramic fibers via an electrospinning/sol–gel process. J. Sol-Gel Sci. Technol. 61, 185–191 (2012)

    Article  Google Scholar 

  19. Z. Yang, C.S. Wang, X.H. Li, H.X. Zeng, (Zn, Ni, Ti) substituted barium ferrite particles with improved temperature coefficient of coercivity. Mater. Sci. Eng. B Solid 90, 142–145 (2002)

    Article  Google Scholar 

  20. G.B. Teh, D.A. Jefferson, High-resolution transmission electron microscopy studies of sol–gel-derived cobalt-substituted barium ferrite. J. Solid State Chem. 167, 254–257 (2002)

    Article  ADS  Google Scholar 

  21. W.J. Zhang, Y. Bai, X. Han, L. Wang, X.F. Lu, L.J. Qiao, J.L. Cao, D. Guo, Phase formation, sintering behavior and magnetic property of Bi–Co–Ti substituted M-type barium hexaferrite. J. Alloys Compd. 556, 20–25 (2013)

    Article  Google Scholar 

  22. C.S. Wang, L.T. Li, J. Zhou, X.W. Qi, Z.X. Yue, X.H. Wang, Microstructures and high-frequency magnetic properties of low-temperature sintered Co–Ti substituted barium ferrites. J. Magn. Magn. Mater. 257, 100–106 (2003)

    Article  ADS  Google Scholar 

  23. H.T. Zhao, Y.C. Du, L.L. Kang, P. Xu, L. Du, Z.H. Sun, X.J. Han, Precursor-directed synthesis of quasi-spherical barium ferrite particles with good dispersion and magnetic properties. CrystEngComm 15, 808–815 (2013)

    Article  Google Scholar 

  24. X.Z. Zhou, A.H. Morrish, Z. Yang, H.X. Zeng, Co–Sn substituted barium ferrite particles. J. Appl. Phys. 75, 5556–5558 (1994)

    Article  ADS  Google Scholar 

  25. J. Lee, Y.K. Hong, W. Lee, G.S. Abo, J. Park, N. Neveu, W.M. Seong, S.H. Park, W.K. Ahn, Soft M-type hexaferrite for very high frequency miniature antenna applications. J. Appl. Phys. 111(07A502), 501–503 (2012)

    Google Scholar 

  26. C.J. Li, B. Wang, J.N. Wang, Magnetic and microwave absorbing properties of electrospun Ba(1−x)La x Fe12O19 nanofibers. J. Magn. Magn. Mater. 324, 1305–1311 (2012)

    Article  ADS  Google Scholar 

  27. A. Ghasemi, A. Hossienpour, A. Morisako, A. Saatchi, M. Salehi, Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite. J. Magn. Magn. Mater. 302, 429–435 (2006)

    Article  ADS  Google Scholar 

  28. Z.L. Zheng, H.W. Zhang, Complex permittivity and permeability of low-temperature sintered M-type barium hexaferrite in Ka-band frequency range. IEEE Trans. Magn. 49, 4230–4233 (2013)

    Article  ADS  Google Scholar 

  29. H. Sozeri, H. Deligoz, H. Kavas, A. Baykal, Magnetic, dielectric and microwave properties of M–Ti substituted barium hexaferrites (M = Mn2+, Co2+, Cu2+, Ni2+, Zn2+). Ceram. Int. 40, 8645–8657 (2014)

    Article  Google Scholar 

  30. S. Shakoor, M.N. Ashiq, M.A. Malana, A. Mahmood, M.F. Warsi, M. Najam-ul-Haq, N. Karamat, Electrical, dielectric and magnetic characterization of Bi–Cr substituted M-type strontium hexaferrite nanomaterials. J. Magn. Magn. Mater. 362, 110–114 (2014)

    Article  ADS  Google Scholar 

  31. C.A. Stergiou, I. Manolakis, T.V. Yioultsis, G. Litsardakis, Dielectric and magnetic properties of new rare-earth substituted Ba-hexaferrites in the 2–18 GHz frequency range. J. Magn. Magn. Mater. 322, 1532–1535 (2010)

    Article  ADS  Google Scholar 

  32. W. Chun-Yu, S. Xiang-Qian, S. Fu-Zhan, Double-layer microwave absorber of nanocrystalline strontium ferrite and iron microfibers. Chin. Phys. B 21, 028101 (2012)

    Article  ADS  Google Scholar 

  33. N. Chen, K. Yang, M.Y. Gu, Microwave absorption properties of La-substituted M-type strontium ferrites. J. Alloys Compd. 490, 609–612 (2010)

    Article  Google Scholar 

  34. W.R. Agami, M.A. Ashmawy, A.A. Sattar, Structural, IR, and magnetic studies of annealed Li-ferrite nanoparticles. J. Mater. Eng. Perform. 23, 604–610 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the Major State Basic Research Development Program of China (973 Program) (Grant No. 2012CB933100). J. Li acknowledges the scholarship support from the Chinese Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Li, J., Zhang, H. et al. Ba(CoTi)1.22Fe9.56O19 ferrites prepared by sol–gel method and solid-state method techniques. Appl. Phys. A 122, 306 (2016). https://doi.org/10.1007/s00339-016-9845-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9845-9

Keywords

Navigation