Skip to main content

Plasmonic Analogue of Electromagnetically Induced Transparency in Detuned Nano-Cavities Coupled to a Waveguide

  • Conference paper
  • First Online:
Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015

Abstract

We theoretically investigate the classical analogue of electromagnetically induced transparency (EIT) in a plasmonic structure constituted by double side cavities connected symmetrically to a waveguide. The EIT is demonstrated by simply detuning the sizes of the two cavities (i.e., the length difference ΔL, keeping their width w similar). The physical mechanism behind the EIT resonance is unveiled as being caused by the destructive and constructive interference between the confined modes in the two cavities. The former play the role of two coupled radiative oscillators. The proposed structure may have important applications for designing integrated devices such as: narrow-frequency optical filters, novel sensors and high-speed switches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Google Scholar 

  2. Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50, 36 (1997)

    Google Scholar 

  3. Liu, C., Dutton, Z., Behroozi, C.H., Hau, L.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490 (2001)

    Google Scholar 

  4. Piao, X., Yu, S., Park, N.: Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt. Express 20, 18994 (2012)

    Google Scholar 

  5. Liu, N., Langguth, L., Weiss, T., Kastel, J., Fleischhauer, M., Pfau, T., Giessen, H.: Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758 (2009)

    Google Scholar 

  6. Han, Z., Bozhevolnyi, S.I.: Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt. Express 19, 3251 (2011)

    Google Scholar 

  7. Zhang, S., Genov, D, A., Wang, Y., Liu, M., Zhang, X.: Plasmon-induced transparency in metamaterials.  Phys. Rev. Lett. 101, 047401 (2008)

    Google Scholar 

  8. Wu, J., Jin, B., Wan, J., Liang, L., Zhang, Y., Jia, T., Cao, C., Kang, L., Xu, W., Chen, J., Wu, P.: Superconducting terahertz metamaterials mimicking electromagnetically induced transparency.  Appl. Phys. Lett. 99, 161113 (2011)

    Google Scholar 

  9. Singh, R., Al-Naib, I.A., Yang, Y., Chowdhury, D.R., Cao, W., Rockstuhl, C., Ozaki, T., Morandotti, R., Zhang, W.: Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl. Phys. Lett. 99, 201107 (2011)

    Google Scholar 

  10. Fan, S., Joannopoulos, J.D.: Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002)

    Google Scholar 

  11. Yang, X., Yu, M., Kwong, D.-L., Wong, C.W.: All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys. Rev. Lett. 102, 173902 (2009)

    Google Scholar 

  12. Sato, Y., Tanaka, Y., Upham, J., Takahashi, Y., Asano, T., Noda, S.: Strong coupling between distant photonic nanocavities and its dynamic control. Nat. Photon. 6, 56 (2012)

    Google Scholar 

  13. Maleki, L., Matsko, A.B., Savchenkov, A.A., Ilchenko, V.S.: Tunable delay line with interacting whispering-gallery-mode resonators. Opt. Lett. 29, 626 (2004)

    Google Scholar 

  14. Totsuka, K., Kobayashi, N., Tomita, M.: Slow light in coupled-resonator-induced transparency. Phys. Rev. Lett. 98, 213904 (2007)

    Google Scholar 

  15. Raymond Ooi, C.H., Kam, C.H.: Controlling quantum resonances in photonic crystals and thin films with electromagnetically induced transparency. Phys. Rev. B 81, 195119 (2010)

    Google Scholar 

  16. Ding, W., Lu´kyanchuk, B., Qiu, C.-W.: Ultrahigh-contrast-ratio silicon Fano diode. Phys. Rev. A 85, 025806 (2012)

    Google Scholar 

  17. Tassin, P., Zhang, L., Zhao, R., Jain, A., Koschny, T., Soukoulis, C.M.: Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation. Phys. Rev. Lett. 109, 187401 (2012)

    Google Scholar 

  18. Mouadili, A., El Boudouti, E.H., Soltani, A., Talbi, A., Akjouj, A., Djafari-Rouhani, B.: Theoretical and experimental evidence of Fano-like resonances in simple monomode photonic circuits. J. Appl. Phys. 113, 164101 (2013)

    Google Scholar 

  19. Mouadili, A., El Boudouti, E.H., Soltani, A., Talbi, A., Djafari-Rouhani, B., Akjouj, A., Haddadi, K.: Electromagnetically induced absorption in detuned stub waveguides: a simple analytical and experimental model. J. Phys. Condens. Matter. 26, 505901 (2014)

    Google Scholar 

  20. El Boudouti, E.H., Mrabti, T., Al-Wahsh, H., Djafari-Rouhani, B., Akjouj, A., Dobrzynski, L.: Transmission gaps and Fano resonances in an acoustic waveguide: analytical model. J. Phys. Condens. Matter. 20, 255212 (2008)

    Google Scholar 

  21. Tan, W., Yang, C.Z., Liu, H.S., Wang, Z.G., Lin, H.Q., Chen, H.: Manipulating classical waves with an analogue of quantum interference in a V-type atom. Europhys. Lett. 97, 24003 (2012)

    Google Scholar 

  22. Fano, U.: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866 (1961)

    Google Scholar 

  23. Akjouj, A., Lévêque, G., Szunerits, S., Pennec, Y., Djafari-Rouhani, B., Boukherroub, R., Dobrzyński, L.: Nanometal plasmonpolaritons. Surf. Sci. Rep. 68, 1–67 (2013)

    Google Scholar 

  24. Zhang, Z., Zhang, L., Yin, P., Han, X.: Coupled resonator induced transparency in surface plasmon polariton gap waveguide with two side-coupled cavities. Phys. B 446, 55 (2014)

    Google Scholar 

  25. Dong, M., Tomes, M., Eichenfield, M., Jarrahi, M., Carmon, T.: Characterization of a 3D photonic crystal structure using port and S-parameter analysis. In: Proceeding of Comsol Conference in Boston (2013)

    Google Scholar 

  26. Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press, New York (1985)

    Google Scholar 

  27. Noual, A., Pennec, Y., Akjouj, A., Djafari-Rouhani, B., Dobrzynski, L.: Nanoscale plasmon waveguide including cavity resonator. J. Phys. Condens. Matter 21, 375301 (2009)

    Google Scholar 

Download references

Acknowledgments

One of the authors (A.N.) acknowledges the use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton (UK), in the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnane Noual .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Noual, A., Abouti, O.E., Boudouti, E.H.E., Akjouj, A., Djafari-Rouhani, B., Pennec, Y. (2016). Plasmonic Analogue of Electromagnetically Induced Transparency in Detuned Nano-Cavities Coupled to a Waveguide. In: El Oualkadi, A., Choubani, F., El Moussati, A. (eds) Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015. Lecture Notes in Electrical Engineering, vol 380. Springer, Cham. https://doi.org/10.1007/978-3-319-30301-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30301-7_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30299-7

  • Online ISBN: 978-3-319-30301-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics