Skip to main content
Log in

Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A wearable antenna fully designed and fabricated using textile is presented. Both antenna and artificial magnetic conductor plane are designed for operation in the wireless local area network (WLAN)/wireless body area network (WBAN) band from 2.4 to 2.5 GHz. The AMC unit element is designed based on the rectangular patch structure, which is then integrated using slots and slits for bandwidth broadening. Meanwhile, the combination of the slits and L-shaped parasitic elements applied at four edges of the rectangular antenna structure enabled unidirectional radiation outwards from the body. The structure is coaxially fed using a rectangular ring slot centered on the radiating element. Simulated and measured reflection and radiation performance indicate a satisfactory agreement, fulfilling the requirements for WLAN/WBAN applications both in free space and on body. The shielding effectiveness provided by the AMC plane is also evaluated numerically in terms of specific absorption rate, indicating levels below the European regulatory limit of 2 W/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Akhoondzadeh-Asl, D.J. Kern, P.S. Hall, D.H. Werner, Wideband dipoles on electromagnetic bandgap ground planes. IEEE Trans. Antennas Propag. 55(9), 2426–2434 (2007)

    Article  ADS  Google Scholar 

  2. S. Zhu, R. Langley, Dual-band wearable textile antenna on an EBG substrate. IEEE Trans. Antennas Propag. 57(4 part 1), 926–935 (2009)

    Article  ADS  Google Scholar 

  3. S.R. Best, D.L. Hanna, Design of a broadband dipole in close proximity to an EBG ground plane. IEEE Antennas Propag. Mag. 50(6), 52–64 (2008)

    Article  ADS  Google Scholar 

  4. S. Yan, P.J. Soh, G.A.E. Vandenbosch, Low-profile dual-band textile antenna with artificial magnetic conductor plane. IEEE Trans. Antennas Propag. 62(12), 6487–6490 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  5. Y. Zhang, J. Von Hagen, M. Younis, C. Fischer, W. Wiesbeck, Planar artificial magnetic conductors and patch antennas. IEEE Trans. Antennas Propag. 51(10I), 2704–2712 (2003)

    Article  ADS  Google Scholar 

  6. M.K.A. Rahim, N.A. Samsuri, K. Kamardin, P.S. Hall, Vertical and horizontal transmission enhancement between antennas using textile artificial magnetic conductor waveguide sheet. Electron. Lett. 51(9), 671–673 (2015)

    Article  Google Scholar 

  7. P. Prakash, M.P. Abegaonkar, S. Member, A. Basu, S.K. Koul, Gain enhancement of a CPW-fed monopole antenna using polarization-insensitive AMC structure. IEEE Antennas Wirel. Propag. Lett. 12, 1315–1318 (2013)

    Article  ADS  Google Scholar 

  8. W.C. Yang, H. Wang, W.Q. Che, Y. Huang, J. Wang, High-gain and low-loss millimeter-wave LTCC antenna array using artificial magnetic conductor structure. IEEE Trans. Antennas Propag. 63(1), 390–395 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Sievenpiper, L. Zhang, R.F. Jimenez Broas, N.G. Alexöpolous, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999)

    Article  ADS  Google Scholar 

  10. F. Yang, Y. Rahmat-Samii, Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE Trans. Antennas Propag. 51(10), 2691–2703 (2003)

    Article  ADS  Google Scholar 

  11. O. Folayan, R. Langley, Dual frequency band antenna combined with a high impedance band gap surface. IET Microw. Antennas Propag. 3(7), 1118 (2009)

    Article  Google Scholar 

  12. P.J. Soh, G.A.E. Vandenbosch, S.L. Ooi, M.R.N. Husna, Wearable dual-band Sierpinski fractal PIFA using conductive fabric. Electron. Lett. 47(6), 365 (2011)

    Article  Google Scholar 

  13. J.G. Santas, A. Alomainy, Y. Hao, Textile antennas for on-body communications: techniques and properties. The Second European Conference on Antennas and Propagation (EuCAP), Edinburgh (2007), pp. 1–4

  14. S.J. Boyes, S. Member, P.J. Soh, Y. Huang, S. Member, G.A.E. Vandenbosch, N. Khiabani, Measurement and performance of textile antenna efficiency on a human body in a reverberation chamber. IEEE Trans. Antennas Propag. 61(2), 871–881 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project is supported by the Fundamental Research Grant Scheme (FRGS) (Grant No. 9003-00527) and Universiti Malaysia Perlis Incentive Grant (Grant No. 9007-00177). Herwansyah Lago is supported by the MyBrain15 Scholarship from the Malaysian Ministry of Higher Education (MOHE). The authors would like to acknowledge Fatin Nabilah Giman and Ezzaty Faridah Nor for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Jack Soh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lago, H., Soh, P.J., Jamlos, M.F. et al. Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications. Appl. Phys. A 122, 1059 (2016). https://doi.org/10.1007/s00339-016-0575-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0575-9

Keywords

Navigation