Skip to main content

Advertisement

Log in

Facile route to fabricate carbon-doped TiO2 nanoparticles and its mechanism of enhanced visible light photocatalytic activity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High-efficiency photocatalysis requires wide photoresponse range and effective separation of photogenerated charges to fully utilize solar energy. Exploring the simple and cheap methods to synthesize efficient photocatalysts is still a challenging issue. Herein, we report a facile and simple room-temperature hydrolysis method using glucose as carbon source to prepare visible light-active C-doped TiO2 photocatalyst. This approach features low-cost, reliable, and easily upscalable. It is found that C atoms have been incorporated into the interstitial position of anatase TiO2 lattice and distributed homogeneously throughout the surface of TiO2 nanoparticles. The appropriate C doping can greatly improve the separation of photogenerated electron–hole pairs in C-doped TiO2. The C-doped TiO2 samples exhibit enhanced photocatalytic activity with the degradation efficiency under UV and visible light irradiation, which is much faster than that of pure TiO2. The mechanism of the enhanced photocatalytic activity is discussed in detail, which is confirmed by using different scavengers. The work provides a simple and useful way to prepare C-doped wide-gap semiconductors with enhanced photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.M. Schultz, T.P. Yoon, Science 343, 985 (2014)

    Article  Google Scholar 

  2. X.B. Chen, L. Liu, Y.Y. Peter, S.S. Mao, Science 331, 746 (2011)

    Article  ADS  Google Scholar 

  3. Z.M. Yang, G.F. Huang, W.Q. Huang, J.M. Wei, X.G. Yan, Y.Y. Liu, C. Jiao, Z. Wan, A. Pan, J. Mater. Chem. A 2, 1750 (2014)

    Article  Google Scholar 

  4. B. Kosowska, S. Mozia, A.W. Morawski, B. Grzmil, M. Janus, K. Kałucki, Sol. Energy Mater. Sol. Cells 88, 269 (2005)

    Article  Google Scholar 

  5. V. Nadtochenko, N. Denisov, O. Sarkisov, D. Gumy, C. Pulgarin, J. Kiwi, J. Photochem. Photobiol. A Chem 181, 401 (2006)

    Article  Google Scholar 

  6. E.J. Crossland, N. Noel, V. Sivaram, T. Leijtens, J.A. Alexander-Webber, H.J. Snaith, Nature 495, 215 (2013)

    Article  ADS  Google Scholar 

  7. X. Feng, J. Zhai, L. Jiang, Angew. Chem. Int. Ed. 44, 5115 (2005)

    Article  Google Scholar 

  8. C. Dette, M.A. Pérez-Osorio, C.S. Kley, P. Punke, C.E. Patrick, P. Jacobson, F. Giustino, S.J. Jung, K. Kern, Nano Lett. 14, 6553 (2014)

    Article  ADS  Google Scholar 

  9. J. Dong, J. Han, Y. Liu, A. Nakajima, S. Matsushita, S. Wei, W. Gao, ACS Appl. Mater. Interfaces 6, 1385 (2014)

    Article  Google Scholar 

  10. P. Xu, J. Lu, T. Xu, S.M. Gao, B.B. Huang, Y. Dai, J. Phys. Chem. C 114, 9510 (2010)

    Article  Google Scholar 

  11. A. Murphy, P. Barnes, L. Randeniya, I. Plumb, I. Grey, M. Horne, J. Glasscock, Int. J. Hydrog. Energy 31, 1999 (2006)

    Article  Google Scholar 

  12. A. Lahmar, A. Benchaabane, M. Aderdour, A. Zeinert, M. Es-Souni, Appl. Phys. A Mater. 122,1 (2016)

    Article  Google Scholar 

  13. J.G. Yu, L.F. Qi, M. Jaroniec, J. Phys. Chem. C 114, 13118 (2010)

    Article  Google Scholar 

  14. K. Usha, P. Kumbhakar, B. Mondal, Mater. Sci. Semicond. Process. 43, 17 (2016)

    Article  Google Scholar 

  15. Y.H. Peng, G.F. Huang, W.Q. Huang, Adv. Powder Technol. 23, 8 (2012)

    Article  Google Scholar 

  16. Y. Huang, W.K. Ho, S.C. Lee, L.Z. Zhang, G.S. Li, J.C. Yu, Langmuir 24, 3510 (2008)

    Article  Google Scholar 

  17. J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, J. Am. Chem. Soc. 131, 12290 (2009)

    Article  Google Scholar 

  18. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Appl. Catal. A Gen. 265, 115 (2004)

    Article  Google Scholar 

  19. A. Parker, M. Marszewski, M. Jaroniec, ACS Appl. Mater. Interfaces 5, 1948 (2013)

    Article  Google Scholar 

  20. L. Zhang, M.S. Tse, O.K. Tan, Y.X. Wang, M. Han, J. Mater. Chem. A 1, 4497 (2013)

    Article  Google Scholar 

  21. I.-C. Kang, Q. Zhang, S. Yin, T. Sato, F. Saito, Appl. Catal. B Environ. 80, 81 (2008)

    Article  Google Scholar 

  22. J.G. McEvoy, W.Q. Cui, Z.S. Zhang, Catal. Today, 207, 191(2013)

    Article  Google Scholar 

  23. C. Xie, S. Yang, B. Li, H. Wang, J.W. Shi, G. Li, C. Niu, J. Colloid Interface Sci. 476, 1 (2016)

    Article  Google Scholar 

  24. W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Appl. Catal. B Environ. 69, 138 (2007)

    Article  Google Scholar 

  25. F. Dong, H.Q. Wang, Z.B. Wu, J. Phys. Chem. C 113, 16717 (2009)

    Article  Google Scholar 

  26. M. Andersson, L. Osterlund, S. Ljungstrom et al., J. Phys. Chem. B 106, 10674 (2002)

    Article  Google Scholar 

  27. Z. He, W. Que, J. Chen, Y. He, G. Wang, J. Phys. Chem. Solids 74, 924 (2013)

    Article  ADS  Google Scholar 

  28. A. Ansón-Casaos, I. Tacchini, A. Unzue, M.T. Martínez, Appl. Surf. Sci. 270, 675 (2013)

    Article  ADS  Google Scholar 

  29. T. Kamegawa, D. Yamahana, H. Yamashita, J. Phys. Chem. C 114, 15049 (2010)

    Article  Google Scholar 

  30. T. Tsubota, A. Ono, N. Murakami, T. Ohno, Appl. Catal. B Environ. 91, 533 (2009)

    Article  Google Scholar 

  31. Y.-T. Lin, C.-H. Weng, Y.-H. Lin, C.-C. Shiesh, F.-Y. Chen, Sep. Purif. Technol. 116, 114 (2013)

    Article  Google Scholar 

  32. H.B. Yener, Ş.Ş. Helvacı, Appl. Phys. A Mater. 120, 967 (2015)

    Article  ADS  Google Scholar 

  33. Z. Wan, G.-F. Huang, W.-Q. Huang, C. Jiao, X.-G. Yan, Z.-M. Yang, Q. Zhang, Mater. Lett. 122, 33 (2014)

    Article  Google Scholar 

  34. S. Nakade, M. Matsuda, S. Kambe et al., J. Phys. Chem. B 106, 10004 (2002)

    Article  Google Scholar 

  35. S. Nakade, Y. Saito, W. Kubo et al., J. Phys. Chem. B 107, 8607 (2003)

    Article  Google Scholar 

  36. A. Yousef, R.M. Brooks, M.M. El-Halwany, N.A.M. Barakat, M.H. El-Newehy, H.Y. Kim, Chem. Eng. Process. Process Intensif. 95, 202 (2015)

    Article  Google Scholar 

  37. E.M. Neville, J. Ziegler, J.M. Don MacElroy, K. Ravindranathan Thampi, J.A. Sullivan, Appl. Catal. A Gen. 470, 434 (2014)

  38. C. Xu, R. Killmeyer, M.L. Gray, S.U.M. Khan, Appl. Catal. B Environ. 64, 312 (2006)

    Article  Google Scholar 

  39. B. Ahmmad, Y. Kusumoto, M.S. Islam, Adv. Powder Technol. 21, 292 (2010)

    Article  Google Scholar 

  40. Y. Shao, C. Cao, S. Chen, M. He, J. Fang, J. Chen, X. Li, D. Li, Appl. Catal. B Environ. 179, 344 (2015)

    Article  Google Scholar 

  41. D.N. Xiong, G.F. Huang, B.X. Zhou, Q. Yan, A.L. Pan, W.Q. Huang, J. Colloid Interface Sci. 464, 103 (2016)

    Article  Google Scholar 

  42. F. Dong, S. Guo, H.Q. Wang, X.F. Li, Z.B. Wu, J. Phys. Chem. C 115, 13285 (2011)

    Article  Google Scholar 

  43. O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltai, L. Kavan, Phys. Chem. Chem. Phys. 14, 14567 (2012)

    Article  Google Scholar 

  44. H.Q. Wang, Z.B. Wu, Y. Liu, J. Phys. Chem. C 113, 13317 (2009)

    Article  Google Scholar 

  45. C. Di Valentin, G. Pacchioni, A. Selloni, Chem. Mater. 17, 6656 (2005)

    Article  Google Scholar 

  46. Y. Xie, Adv. Funct. Mater. 16, 1823 (2006)

    Article  Google Scholar 

  47. P. Wang, J. Xian, J. Chen, Y. He, J. Wang, W. Li, Y. Shao, D. Li, Appl. Catal. B Environ. 144, 644 (2014)

    Article  Google Scholar 

  48. D. Zhang, R. Qiu, L. Song, B. Eric, Y. Mo, X. Huang, J. Hazard. Mater. 163, 843 (2009)

    Article  Google Scholar 

  49. J. Wang, P. Wang, Y. Cao, J. Chen, W. Li, Y. Shao, Y. Zheng, D. Li, Appl. Catal. B Environ. 136, 94 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Changsha Science and Technology Plan Projects, China (Grant No. K1403067-11) and Environmental Protection Science and Technology Project of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gui-Fang Huang or Wei-Qing Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Huang, GF., Li, D. et al. Facile route to fabricate carbon-doped TiO2 nanoparticles and its mechanism of enhanced visible light photocatalytic activity. Appl. Phys. A 122, 994 (2016). https://doi.org/10.1007/s00339-016-0522-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0522-9

Keywords

Navigation