Skip to main content
Log in

The memristive system behavior of a diac

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The memristor was introduced as a nonlinear circuit element in 1971, and systems showing memristor-like properties such as zero-crossing hysteresis loops were described in 1976. In 2008, a thin-film system that behaved like a memristor over some part of its operating region was discovered. Memristors and memristive systems have thus become a hot research area in recent years, making it important to discover and study such systems that show memristive behavior. Memristors and memristive systems exhibit three distinguishing characteristics that are known as their three fingerprints. Discharge lamps were also shown to exhibit memristive behavior recently. The diac, an electronics component commonly used in alternating-current (AC) applications, exhibits a breakdown mechanism similar to that observed in discharge lamps. According to textbooks, a diac should also obey the characteristics of a memristive system. In this work, a phenomenological model for a diac is first presented, and it is shown that this model satisfies the description of a memristive system; circuit simulations are also used to verify the memristive system behavior of a diac. However, experiments performed on a DB32 diac reveal that it only behaves like a memristive system in a narrow frequency range around 1 kHz. The effect of the junction capacitances of the diac are found to be important in this regard, resulting in the deviation of the diac from the expected memristive system behavior, as supported by the model and circuit simulations. We also believe that the reverse recovery current at frequencies above 1 kHz inhibits the zero-crossing behavior of the diac, even though its hysteresis curve is very similar to that of a memristive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. Chua, L.O., Sung Mo, K.: Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  3. Di Ventra, M., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors and meminductors. Proc. IEEE 97, 1717–1724 (2009)

    Article  Google Scholar 

  4. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature (London) 453, 80–83 (2008)

    Article  Google Scholar 

  5. Pershin, Y.V., Martinez-Rincon, J., Di Ventra, M.: Memory circuit elements: from systems to applications. J. Comput. Theor. Nanosci. 8(3), 441–448 (2011)

    Article  Google Scholar 

  6. Prodromakis, T., Toumazou, C.: A review on memristive devices and applications. In: 2010 17th IEEE international conference on electronics, circuits and systems

  7. Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145–227 (2011)

    Article  Google Scholar 

  8. Kavehei, O., et al.: The fourth element: characteristics, modelling and electromagnetic theory of the memristor. Proc. R. Soc. A: Math. Phys. Eng. Sci. 466(2120), 2175–2202 (2010)

    Article  MathSciNet  Google Scholar 

  9. Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)

    Article  Google Scholar 

  10. Chua, L.O.: The fourth element. Proc. IEEE 100, 1920–1927 (2012)

    Article  Google Scholar 

  11. Prodromakis, T., Toumazou, C., Chua, L.: Two centuries of memristors. Nat. Mater. 11, 478–481 (2012)

    Article  Google Scholar 

  12. Marani, R., Gelao, G., Perri, A.G.: A review on memristor applications. Int. J. Adv. Eng. Technol. 8(3), 294 (2015)

    Google Scholar 

  13. Johnsen, G.K., et al.: Memristive model of electro-osmosis in skin. Phys. Rev. E 83(3), 031916 (2011)

    Article  Google Scholar 

  14. Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23(7), 881–886 (2010)

    Article  Google Scholar 

  15. Zhang, Y., et al.: Memristive model for synaptic circuits. IEEE Trans. Circuits Syst. II: Express Br. 64(7), 767–771 (2017)

    Article  Google Scholar 

  16. Chua, L.O., Tseng, C.-W.: A memristive circuit model for p-n junction diodes. Int. J. Circuit Theory Appl. 2(4), 367–389 (1974)

    Article  Google Scholar 

  17. Pershin, Y.V., Di Ventra, M.: Spin memristive systems: spin memory effects in semiconductor spintronics. Phys. Rev. B 78(11), 113309 (2008)

    Article  Google Scholar 

  18. Chua, L., Sbitnev, V., Kim, H.: Hodgkin–Huxley axon is made of memristors. Int. J. Bifurc. Chaos 22, 1230011 (2012)

    Article  Google Scholar 

  19. Krzysteczko, P., Reiss, G., Thomas, A.: Memristive switching of MgO based magnetic tunnel junctions. Appl. Phys. Lett. 95(11), 112508 (2009)

    Article  Google Scholar 

  20. Barnes, B.K., Das, K.S.: Resistance switching and memristive hysteresis in visible-light-activated adsorbed ZnO thin films. Sci. Rep. 8(1), 2184 (2018)

    Article  Google Scholar 

  21. Lin, D., RonHui, S.Y., Chua, L.O.: Gas discharge lamps are volatile memristors. IEEE Trans. Circuits Syst. I: Regul. Pap. 61(7), 2066–2073 (2014)

    Article  Google Scholar 

  22. Kassakian, J.G., Schlecht, M.F., Verghese, G.C.: Principles of Power Electronics. Graphis, New York (2000)

    Google Scholar 

  23. Rashid, M.H. (ed.): Power Electronics Handbook. Butterworth-Heinemann, London (2017)

    Google Scholar 

  24. Boylestad, R.L.: Electronic Devices and Circuit Theory. Pearson Education India, Bangalore (2009)

    Google Scholar 

  25. Mohan, N.: Power Electronics: A First Course. Wiley, New York (2011)

    Google Scholar 

  26. Uzunoğlu, C. P., Babacan, Y., Cekli, S., Kaçar, F., Ugur, M.: Modelling of compact fluorescent lamp characteristics using memristor emulator circuit. In: International Conference on Memristive Materials, Devices & Systems (MEMRISYS 2017) (2017)

  27. Linn, E., et al.: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403 (2010)

    Article  Google Scholar 

  28. Karakulak, E., Mutlu, R., Ucar, E.: Reconstructive sensing circuit for complementary resistive switches-based crossbar memories. Turk. J. Electr. Eng. Comput. Sci. 24(3), 1371–1383 (2016)

    Article  Google Scholar 

  29. Adhikari, S.P., et al.: Three fingerprints of memristor. IEEE Trans. Circuits Syst. I: Regul. Pap. 60(11), 3008–3021 (2013)

    Article  Google Scholar 

  30. LTSpice | Design Center | Analog Devices. Retrieved April 10, 2020, from https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

  31. Diotech Semiconductor DB32 Datasheet. Retrieved April 10, 2020, from https://www.tme.eu/Document/2ba296385e9d036c34c3dddbd0f8d2e8/db3.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ertuğrul Karakulak.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakulak, E., Mutlu, R. The memristive system behavior of a diac. J Comput Electron 19, 1344–1355 (2020). https://doi.org/10.1007/s10825-020-01495-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01495-5

Keywords

Navigation