Skip to main content
Log in

Palladium-doped–ZrO2–multiwalled carbon nanotubes nanocomposite: an advanced photocatalyst for water treatment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The photocatalytic degradation of organic pollutants from water using palladium-doped–zirconium oxide–multiwalled carbon nanotubes (Pd–ZrO2–MWCNTs) nanocomposites is presented. A series of Pd doped–ZrO2–MWCNTs nanocomposites with varying percentage compositions of Pd were prepared by the homogenous co-precipitation method. The photocatalytic applicability of the materials was investigated by the degradation of acid blue 40 dye in water under simulated solar light. The optical, morphological and structural properties of the nanocomposites were evaluated using X-ray powder diffraction, Fourier transformer infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, BET surface area analysis and (UV–Vis) spectroscopy. The Pd–ZrO2–MWCNTs nanocomposites showed enhanced photocatalytic activity toward the degradation of the acid blue 40 dye under visible light compared with bare ZrO2 and ZrO2–MWCNTs alone. The remarkable photocatalytic activity of Pd–ZrO2–MWCNTs nanocomposites in the visible light makes it an ideal photocatalyst for the removal of organic pollutants in water. The 0.5 % Pd–ZrO2–MWCNT was the most efficient photocatalyst with 98 % degradation after 3 h with corresponding K a and band gap values of 16.8 × 10−3 m−1 and 2.79 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Malato, P. Fernandez-Ibanez, M.I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 147(1), 1–59 (2009)

    Article  Google Scholar 

  2. M.E. Ali, M. Ullah, S.B.A. Hamid, Adv. Mater. Res. 925, 674–678 (2014)

    Article  Google Scholar 

  3. H. Eccles, Trends Biotechnol. 17(12), 462–465 (1990)

    Article  Google Scholar 

  4. W.E. Gacitua, A.A. Ballerini, J. Zhang, Cienc. Y Tecnol. 7(3), 159–178 (2005)

    Google Scholar 

  5. M. Chatry, M. Henry, J. Livage, Matter. Res. Bull. 29(5), 517–522 (1994)

    Article  Google Scholar 

  6. J. Joo, T. Yu, Y.W. Kim, J. Am. Chem. Soc. 125(21), 6553–6557 (2003)

    Article  Google Scholar 

  7. S. Gupta, M. Tripathi, Chin. Sci. Bull. 56(16), 1639–1657 (2011)

    Article  Google Scholar 

  8. B. Gao, C. Peng, G.Z. Chen, G.L. Puma, Appl. Catal. B Environ. 85(1), 17–23 (2008)

    Article  Google Scholar 

  9. N. Riaz, N.F. Chong, Z.B. Man, M.S. Khan, E. Nurlaela, Ind. Eng. Chem. Res. 52(12), 4491–4503 (2013)

    Article  Google Scholar 

  10. B. Pietruszka, F.D. Gregorio, N. Keller, V. Keller, Catal. Today 102, 94–100 (2005)

    Article  Google Scholar 

  11. Y.H. Tseng, C.Y. Yen, M.Y. Yen, C.C.M. Ma, Macro Nano Lett. 5(1), 1–6 (2010)

    Article  Google Scholar 

  12. C. Pecharroman, M. Ocana, C.J. Serna, J. Appl. Phys. 80(6), 3479–3483 (1996)

    Article  ADS  Google Scholar 

  13. Y. Shan, L. Gao, Nanotechnology 16(6), 625 (2005)

    Article  ADS  Google Scholar 

  14. S.M. Nahar, K. Hasegawa, S. Kagaya, Chemosphere 65(11), 1976–1982 (2006)

    Article  Google Scholar 

  15. J.C. Garcia, L.M.R. Scolfaro, A.T. Lino, V.N. Freire, G.A. Farias, C.C. Silva, H.L. Alves, S.C.P. Rodrigues, E.F. da Silva Jr, J. Appl. Phys. 100(10), 104103 (2006)

    Article  ADS  Google Scholar 

  16. M. Aguilar-Frutis, G. Reyna-Garcia, M. Garcia-Hipolito, J. Guzman-Mendoza, J. Falcony, Vac. Sci. Technol. A 22(4), 1319–1325 (2004)

    Article  ADS  Google Scholar 

  17. H.R. Sahu, G.R. Rao, Bull. Mater. Sci. 23(5), 349–354 (2000)

    Article  Google Scholar 

  18. H.R. Pouretedal, M. Hosseini, Acta Chim. Slov. 57, 415–423 (2010)

    Google Scholar 

  19. W. Jiang, J. He, J. Zhong, J. Lu, S. Yuan, B. Liang, Appl. Surf. Sci. 307, 407–413 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Faculty of Science, University of Johannesburg, South Africa, the Centre of Nanomaterials and Science Research: Department of Applied Chemistry, National Research Foundation and Water Research Commission of South Africa for providing financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Wilson Anku.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anku, W.W., Oppong, S.OB., Shukla, S.K. et al. Palladium-doped–ZrO2–multiwalled carbon nanotubes nanocomposite: an advanced photocatalyst for water treatment. Appl. Phys. A 122, 579 (2016). https://doi.org/10.1007/s00339-016-0086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0086-8

Keywords

Navigation