Skip to main content

Advertisement

Log in

A fast combinative chemical precipitation/microwave-activated approach for the synthesis of alloyed CdSexTe1-x nanocrystals for application in quantum dot-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work CdSe0.4Te0.6 NCs were synthesized in aqueous solution by a novel combinative chemical precipitation/microwave-activated method. The microwave time was interestingly altered in a short-time range for the synthesis of these NCs with different sizes and bandgap energies. Then they were applied as the co-sensitizing quantum dots layer in the photoanode of the CdS QDs sensitized solar cells (QDSCs). It was displayed that the QDSC with TiO2 NCs/CdSeTe(0.5hR)/CdS/ZnS photoelectrode demonstrated a power conversion efficiency (PCE) of 1.65% in AM 1.5 solar irradiation. The selected CdSeTe(0.5hR) NCs were prepared in 0.5 h of the reflux time in chemical precipitation method. Then they were utilized in a second microwave-activated growth process to achieve larger sizes of the CdSeTe NCs. The microwave time was changed in the range of 0–2.5 h in the experiments and synthesized CdSeTe 0.5hR + 0–2.5hM NCs were applied in the photoanode of the corresponding QDSCs. It was shown that the QDSC with TiO2 NCs/CdSeTe(0.5hR + 0.5hM)/CdS/ZnS photoelectrode revealed a maximum power conversion efficiency of 5%. The considerable point was that the CdSeTe(0.5hR + 0.5hM) NCs demonstrated 76% higher photoluminescence (PL) quantum yield (QY) than the best situation of particles which were normally prepared in 7 h of the reflux time. Besides, the growth was properly carried out in just 1 h of this proposed combinative method. The better crystalline quality and appropriate absorption edge were introduced as the main reasons for highest power conversion efficiency. The short synthesis time was also clarified as the advantage of this proposed approach compared to the normal colloidal synthesis in longer reflux times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. O.E. Semonin, J.M. Luther, S. Choi, H.Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Science 334, 1530–1533 (2011)

    Article  CAS  Google Scholar 

  2. P.V. Kamat, J. Phys. Chem. C 112, 18737–18753 (2008)

    Article  CAS  Google Scholar 

  3. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 130, 4007–4015 (2008)

    Article  CAS  Google Scholar 

  4. P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, Chem. Rev. 110(11), 6664–6688 (2010)

    Article  CAS  Google Scholar 

  5. J. Albero, J.N. Clifford, E. Palomares, Chem. Rev. 263, 53–64 (2014)

    Google Scholar 

  6. A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, J.C. Johnson, Chem. Rev. 110, 6873–6890 (2010)

    Article  CAS  Google Scholar 

  7. D.R. Baker, P.V. Kamat, Adv. Funct. Mater. 19, 805–811 (2009)

    Article  CAS  Google Scholar 

  8. B.I. MacDonald, A. Martucci, S. Rubanov, S.E. Watkins, P. Mulvaney, J.J. Jasieniak, ACS Nano 5995–6004, 6 (2012)

    Google Scholar 

  9. R. Vogel, K. Pohl, H. Weller, Chem. Phys. Lett. 174, 241–246 (1990)

    Article  CAS  Google Scholar 

  10. D. Ham, K.K. Mishra, K. Rajeshwar, J. Electrochem. Soc. 138, 100–108 (1991)

    Article  CAS  Google Scholar 

  11. S. Yochelis, G. Hodes, Chem. Mater. 16, 2740–2744 (2004)

    Article  CAS  Google Scholar 

  12. I. Mora-Sero, S. Gimenez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gomez, J. Bisquert, Nanotechnology 19, 424007 (2008)

    Article  CAS  Google Scholar 

  13. N. Guijarro, T. Lana-Villarreal, I. Mora-Sero, J. Bisquert, R. Gomez, J. Phys. Chem. C 113, 4208–4214 (2009)

    Article  CAS  Google Scholar 

  14. P. Brown, P.V. Kamat, J. Am. Chem. Soc. 130, 14020 (2008)

    Google Scholar 

  15. I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 128, 2385–2393 (2006)

    Article  CAS  Google Scholar 

  16. D.F. Watson, J. Phys. Chem. Lett. 1, 2299–2309 (2010)

    Article  CAS  Google Scholar 

  17. W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, J. Am. Chem. Soc. 130, 1124–1125 (2008)

    Article  CAS  Google Scholar 

  18. L.M. Peter, D.J. Riley, E.J. Tull, K.G.U. Wijayantha, Chem. Commun. 10, 1030–1031 (2002)

    Article  CAS  Google Scholar 

  19. Y. Tachibana, K. Umekita, Y. Otsuka, S. Kuwabata, J. Phys. D: Appl. Phys. 41, 102002 (2008)

    Article  CAS  Google Scholar 

  20. Y.H. Niu, A.M. Munro, Y.J. Cheng, Y.Q. Tian, M.S. Liu, J.L. Zhao, J.A. Bardecker, I.J.L. Plante, D.S. Ginger, A.K.Y. Jen, Adv. Mat. 19, 3371–3376 (2007)

    Article  CAS  Google Scholar 

  21. P. Chauhan, A.B. Patel, G.K. Solanki, H.K. Machhi, C.K. Sumesh, S.S. Soni, V. Patel, V.M. Pathak, J. Phys. Chem. C 125, 14729–14740 (2021)

    Article  CAS  Google Scholar 

  22. A.B. Patel, P. Chauhan, K. Patel, C.K. Sumesh, S. Narayan, K.D. Patel, G.K. Solanki, V.M. Pathak, P.K. Jha, V. Patel, ACS Sustain. Chem. Eng. 12, 4809–4817 (2020)

    Article  CAS  Google Scholar 

  23. H. Zhang, K. Cheng, Y.M. Hou, Z. Fang, Z.X. Pan, W.J. Wu, J.L. Hua, X.H. Zhong, Chem. Commun. 48, 11235 (2012)

    Article  CAS  Google Scholar 

  24. H. T. Nguyen, A. T. Duong, S, Lee

  25. J. Jaiswal, A. Sanger, P. Tiwari, R. Chandra, J. Sensor. Actu. B: Chem. 305, 127437 (2020)

    Article  CAS  Google Scholar 

  26. J. Jie, Z. Zheng-Ji, Z. Wen-Hui, W. Xin, J. Mater. Sci. Semicond. Process (2013). https://doi.org/10.1016/j.pmatsci.2019.100573

    Article  Google Scholar 

  27. D. Esparza, T. Lopez-Luke, J. Oliva, A. Cerdan-Pasaran, A. Martinez-Benitez, I. Mora-Sero, E. De la Rosa, J. Electacta. 119(24), 13394–13403 (2017)

    Google Scholar 

  28. M. Marandi, P. Talebi, L. Moradi, Optical Mater 94, 224–230 (2019)

    Article  CAS  Google Scholar 

  29. W. William Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 15(14), 2854–2860 (2003)

    Article  CAS  Google Scholar 

  30. T. Toyoda, J. Sato, Q. Shen, Rev. Sci. Instruments 74(1), 793 (2003)

    Article  CAS  Google Scholar 

  31. M. Shalom, S. Rühle, I. Hod, S. Yahav, A. Zaban, Am. Chem. Soc. 131, 9876 (2009)

    Article  CAS  Google Scholar 

  32. S. Kim, C. Justin Raj, H. Kim, Electron Mater Lett 10, 1137 (2014)

    Article  CAS  Google Scholar 

  33. D Liu, J Liu, J Liu, S Liu, C Wang, Z Ge, X Hao, N Duc, H Xia (2020) Physica E: Low-dimensional systems and nanostructures 115

  34. H. Zhang, K. Cheng, Y.M. Hou, Z. Fang, Z.X. Pan, W.J. Wu, J.L. Hua, X.H. Zhong, J. Chem. Commun. 48, 11235 (2012)

    Article  CAS  Google Scholar 

  35. M. Marandi, F.S. Mirahmadi, Solar Energy 188, 35–44 (2019)

    Article  CAS  Google Scholar 

  36. M. Marandi, F.S. Mirahmadi, J. Jallcom 188, 35–44 (2019)

    CAS  Google Scholar 

  37. N. Mobedi, M. Marandi, H. Zare Bidaki, J. Luminescence 156, 235–239 (2014)

    Article  CAS  Google Scholar 

  38. Y.F. Liu, J.S. Yu, J. Colloid Interface Sci. 333(2), 690–698 (2009)

    Article  CAS  Google Scholar 

  39. B. Kohal, N. Parsi, G. Victoria, B. Pablop, C.H. Sudam, T. Ramon, D. GeorgeP et al., J. Phys Chem. 188, 35–44 (2012)

    Google Scholar 

  40. H. Xing, Zh. Quanxin, H. Xiaoming, L. Dongmei, L. Yanhong, M. Qingbo, J. Mater Chem 21, 15903 (2011)

    Article  CAS  Google Scholar 

  41. J. Yu, W. Wang, Zh. Pan, J. Du, Zh. Ren, W. Xuea, X. Zhong, J. Mater. Chem. A 5, 14124–14133 (2017)

    Article  CAS  Google Scholar 

  42. J. Yang, J. Wang, K. Zhao, T. Izuishi, Y. Li, Q. Shen, X. Zhong, J. Phys. Chem. 119, 28800–28808 (2015)

    CAS  Google Scholar 

  43. M. Marandi, S. Hossein Abadi, J. Solar Energy 209, 387–399 (2020)

    Article  CAS  Google Scholar 

  44. Z. Chen, W. Peng, K. Zhang, J. Zhang, X. Yang, Y. Numata, L. Han, J. Mater. Chem. A 2, 7004–7014 (2014)

    Article  CAS  Google Scholar 

  45. M.T. Harrison, S.V. Kershaw, M.G. Burt, A. Eychmuller, H. Weller, A.L. Rogach, Mater. Sci. Eng. B 69, 355–360 (2000)

    Article  Google Scholar 

  46. P. Ma, Y. Fang, H. Cheng, Y. Wang, X. Zhou, S. Fang, Y. Lin, J. Electrochim. Acta 262, 197–205 (2018)

    Article  CAS  Google Scholar 

  47. G. Hodes, J. Phys. Chem. C 112, 17778–17787 (2008)

    Article  CAS  Google Scholar 

  48. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, M. Hanaya, Chem. Commun. 51, 15894–15897 (2015)

    Article  CAS  Google Scholar 

  49. M. Ye, D. Zheng, M. Lv, C. Chen, C. Lin, Z. Lin, Adv. Mater. 25, 3039–3044 (2013)

    Article  CAS  Google Scholar 

  50. X. Meng, C. Yu, X. Song, Y. Liu, S. Liang, Z. Liu, C. Hao, Adv. Energy Mater 5, 1500180 (2015)

    Article  CAS  Google Scholar 

  51. X. Meng, C. Yu, B. Lu, J. Yang, Nano Energy 22, 59–69 (2016)

    Article  CAS  Google Scholar 

  52. C. Yu, X. Meng, X. Song, S. Liang, Q. Dong, G. Wang, C. Hao, X. Yang, T. Ma, P.M. Ajayan, Carbon 100, 474–483 (2016)

    Article  CAS  Google Scholar 

  53. X. Meng, C. Yu, X. Song, Z. Liu, B. Lu, C. Hao, J. Mater. Chem. A 5, 2280–2287 (2017)

    Article  CAS  Google Scholar 

  54. I. Hod, A. Zaban, Langmuir 30, 7264–7273 (2014)

    Article  CAS  Google Scholar 

  55. I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 128, 2385 (2006)

    Article  CAS  Google Scholar 

  56. M. Wang, A.M. Anghel, B. Marsan, N.C. Ha, N. Pootrakulchote, S.M. Zakeeruddin, M. Gratzel, J. Am. Chem. Soc. 131, 15976–15977 (2009)

    Article  CAS  Google Scholar 

  57. K. Imoto, K. Takashashi, T. Yamaguchi, T. Komura, J.I. Nakamura, K. Murata, Solar Energy Mater Solar Cells 79, 459–469 (2003)

    Article  CAS  Google Scholar 

  58. E. Ramasamy, J. Lee, Chem. Commun. 46, 2136 (2010)

    Article  CAS  Google Scholar 

  59. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, S. Hao, J. Power Sources 181, 172–176 (2008)

    Article  CAS  Google Scholar 

  60. G. Hodes, J. Manassen, D. Cahen, J. Electrochem. Soc. 127, 544–549 (1980)

    Article  CAS  Google Scholar 

  61. Z. Tachan, M. Shalom, I. Hod, S. Ruhle, S. Tirosh, A. Zaban, J. Phys. Chem. C 115, 6162 (2011)

    Article  CAS  Google Scholar 

  62. C.Y. Lin, C.Y. Teng, T.L. Li, Y.L. Lee, H. Teng, J Mater Chem. A 1, 1155 (2013)

    Article  CAS  Google Scholar 

  63. W. William Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 15, 2854 (2003)

    Article  CAS  Google Scholar 

  64. R. Sh Pan, H. Zhou, L. Niu, B. Wan, Y. Huang, F. Huang, JXu. Ji, J. Alloy. Comp. 709, 187 (2017)

    Article  CAS  Google Scholar 

  65. H. Wei, G. Wang, Y. Luo, D. Li, Q. Meng, Electrochim. Acta 173, 156 (2015)

    Article  CAS  Google Scholar 

  66. M. Marandi, N. Torabi, Solar Energy 207, 32–39 (2020)

    Article  CAS  Google Scholar 

  67. P.K. Santra, P.V. Kamat, J. Am. Chem. Soc. 135, 877 (2013)

    Article  CAS  Google Scholar 

  68. Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, X. Zhong, ACS Nano 7, 3540 (2013)

    Article  CAS  Google Scholar 

  69. P.K. Santra, P.V. Nair, K. George Thomas, P.V. Kamat, J. Phys. Chem. Lett. 4, 722 (2013)

    Article  CAS  Google Scholar 

  70. Z. Pan, I. Mora-Seró, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong, J. Bisquert, Am. Chem. Soc. 136, 9203 (2014)

    Article  CAS  Google Scholar 

  71. S. Özdemir, Production and characterization of water solution CdSeTe based core/shell Nano crystal and their application in bioimaging. Master of Sci. 1(1), 34–42 (2009)

    Google Scholar 

  72. M.Kumara, A. ehrab, eepc, Kediab, ilbaghia, K.H. Kimd, Renew. Sustain. Energy Reviews 3 (2017).

  73. H. Zhao, F. Rosei, Chem Ress 3, 229 (2017)

    CAS  Google Scholar 

  74. J. Yang, J. Wang, K. Zhao, T. Izuishi, Y. Li, Q. Shen, X. Zhong, J. Phys. Chem. 119, 28800 (2015)

    CAS  Google Scholar 

  75. J. Yu, W. Wang, Z. Pan, J. Du, Z. Ren, W. Xue, X. Zhong, J. Mater. Chem. A 5, 14124 (2017)

    Article  CAS  Google Scholar 

  76. M.S. Fuente, R.S. Sanchez, V. Gonzalez-Pedro, P.P. Boix, S.G. Mhaisalkar, M.E. Rincon, Phys. Chem. Lett. 4, 1519–1525 (2013)

    Article  CAS  Google Scholar 

  77. G. Liu, Z.B. Ling, Y. Wang, H. Zhao, Hydrog. Energy 43, 22064 (2018)

    Article  CAS  Google Scholar 

  78. R.E. Bailey, S.M. Nie, J. Am. Chem. Soc. 125(23), 7100 (2003)

    Article  CAS  Google Scholar 

  79. Z. Wan, W. Luan, T. Tu, Colloid Interface Sci. 356, 78–85 (2011)

    Article  CAS  Google Scholar 

  80. R. Lewis, SAXS dangerous properties of industrial materials (Wiley & Sons, New York, 2004)

    Book  Google Scholar 

  81. N. Piven, A.S. Susha, M. Doblinger, A.L. Rogach, J. Phys. Chem. 112, 15253 (2008)

    CAS  Google Scholar 

  82. G.C. Fan, H. Zhu, D. Du, J. Zhang, J.J. Zhu, Y. Lin, J. ACS. Anal Chem 88, 3392 (2016)

    Article  CAS  Google Scholar 

  83. J. Luo, H. Wei, F. Li, Q. Huang, D. Li, Y. Luo, Q. Meng, J. Chem. Commun. 50, 3464 (2014)

    Article  CAS  Google Scholar 

  84. H.J. Lee, D.W. Chang, S.M. Park, S.M. Zakeeruddin, M. Gratzel, M.K. Nazeeruddin, J. Chem. Commun. 46, 8788 (2010)

    Article  CAS  Google Scholar 

  85. M. Marandi, B. Emrani, H. Zare, J. Opt. Mater. 69, 358 (2017)

    Article  CAS  Google Scholar 

  86. M. Marandi, S. Feshki, M.N.S. Sabet, Z. Anajafi, N. Taghavinia, RSC Adv. 4, 58064 (2014)

    Article  CAS  Google Scholar 

  87. Y. Tang, X. Xu, L. Dong, L. Zhou, B. Li, J. Optik 126, 5694 (2015)

    Article  CAS  Google Scholar 

  88. G.A. Crosby, J.N. Demas, J. Phys. Chem. 75, 991 (1971)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by SHA, AE, and MM. The first draft of the manuscript was written by MM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maziar Marandi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Informed consent

There is not any consent for this article to be informed. This is normal research which is carried out in the university.

Research involving human and animals participants

This research does not involve any human participant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marandi, M., Hossein Abadi, S. & Eftekhari, A. A fast combinative chemical precipitation/microwave-activated approach for the synthesis of alloyed CdSexTe1-x nanocrystals for application in quantum dot-sensitized solar cells. J Mater Sci: Mater Electron 33, 16713–16727 (2022). https://doi.org/10.1007/s10854-022-08514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08514-0

Navigation