Skip to main content
Log in

Ferroelectric (Na1/2Bi1/2)TiO3 thin films showing photoluminescence properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polycrystalline lead-free (Na1/2Bi1/2)TiO3 (NBT) ferroelectric thin films doped with 1 mol% of rare earth (RE) elements are processed on Pt-terminated silicon substrates using a solution deposition method. The thin films that exhibit single-phase perovskite structure show photoluminescence properties with highest intensities in the wavelength range between 700 and 850 nm, depending on RE element. The ferroelectric properties of the pure NBT film (P r: 20.5 µC cm−2, E c: 150 kV cm−1) are somewhat decreased for the doped films, which is ascribed to decreasing of the number of Bi lone pairs through the substitution of Bi with RE elements in the perovskite lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.A. Smolenski, A.I. Aganovskaya, Sov. Phys. Solid State 1, 1429 (1960)

    Google Scholar 

  2. A. Herabut, A. Dafan, J. Am. Ceram. Soc. 80, 2954 (1997)

    Article  Google Scholar 

  3. M.S. Hagiyev, L.H. Ismaizade, A.K. Abiyev, Ferroelectrics 56, 215 (1984)

    Article  Google Scholar 

  4. J.V. Zvirgzds, P.P. Kapostis, V.A. Isupov, Ferroelectrics 40, 75 (1980)

    Article  Google Scholar 

  5. J.K. Lee, K.S. Hong, C.K. Kim, S.E. Park, J. Appl. Phys. 91, 4538 (2002)

    Article  ADS  Google Scholar 

  6. S.E. Park, K.S. Hong, J. Appl. Phys. 79, 383 (1996)

    Article  ADS  Google Scholar 

  7. J. Kreisel, A.M. Glazer, P. Bouvier, G. Lucazeau, Phys. Rev. B 63, 174106 (2001)

    Article  ADS  Google Scholar 

  8. O. Elkechai, P. Marchet, P. Thomas, M. Manier, J.P. Mercurio, J. Mater. Chem. 7, 91 (1997)

    Article  Google Scholar 

  9. V. Dorcet, G. Trolliard, P. Boullay, J. Magn. Magn. Mater. 321, 1758 (2009)

    Article  ADS  Google Scholar 

  10. S. Gorfman, P.A. Thomas, J. Appl. Crystallogr. 43, 1409 (2010)

    Article  Google Scholar 

  11. E. Aksel, J.S. Forrester, B. Kowalski, J.L. Jones, P.A. Thomas, Appl. Phys. Lett. 99, 222901 (2011)

    Article  ADS  Google Scholar 

  12. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991)

    Article  ADS  Google Scholar 

  13. N. Ichinose, K. Udagawa, Ferroelectrics 169, 317 (1995)

    Article  Google Scholar 

  14. T. Takenaka, T. Okuda, K. Takegahara, Ferroelectrics 196, 175 (1997)

    Article  Google Scholar 

  15. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999)

    Article  ADS  Google Scholar 

  16. H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Jpn. J. Appl. Phys. 42, 7401 (2003)

    Article  ADS  Google Scholar 

  17. D.M. Lin, D.Q. Xiao, J.G. Zhu, P. Yu, Appl. Phys. Lett. 88, 062901 (2006)

    Article  ADS  Google Scholar 

  18. D.M. Lin, D.Q. Xiao, J.G. Zhu, P. Yu, Appl. Phys. Lett. 88, 062901 (2006)

    Article  ADS  Google Scholar 

  19. M. Zannen, A. Lahmar, M. Dietze, H. Khemakhem, A. Kabadou, M. Es-Souni, Mater. Chem. Phys. 134, 829 (2012)

    Article  Google Scholar 

  20. X.X. Wang, H.L. Chan, C.L. Choy, Solid State Commun. 125, 395 (2003)

    Article  ADS  Google Scholar 

  21. Y.H. Lin, S.J. Zhao, N. Cai, J. Wu, X.S. Zhou, C.W. Nan, Mater. Sci. Eng. B 99, 449 (2003)

    Article  Google Scholar 

  22. J.Y. Yi, J.K. Lee, K.S. Hong, J. Am. Ceram. Soc. 85, 3004 (2002)

    Article  Google Scholar 

  23. A. Herabut, A. Safari, J. Am. Ceram. Soc. 80, 2954 (1997)

    Article  Google Scholar 

  24. J.K. Lee, J.Y. Yi, K.S. Hong, J. Appl. Phys. 96, 1174 (2004)

    Article  ADS  Google Scholar 

  25. M. Raghavender, G.S. Kumar, G. Prasad, J. Phys. Chem. Solids 67, 1803 (2006)

    Article  ADS  Google Scholar 

  26. F.C.D. Lemos, D.M.A. Melo, J.E.C. da Silva, Mater. Res. Bull. 40, 187 (2005)

    Article  Google Scholar 

  27. X.-G. Tang, J. Wang, X.-X. Wang, H.L.-W. Chan, Chem. Mater. 16, 5293 (2004)

    Article  Google Scholar 

  28. E. Mercadelli, C. Galassi, A.L. Costa, S. Albonetti, A. Sanson, J. Solgel Sci. Technol. 46, 39 (2008)

    Article  Google Scholar 

  29. Y.J. Ma, J.H. Cho, Y.H. Lee, B.I. Kim, Mater. Chem. Phys. 98, 5 (2006)

    Article  Google Scholar 

  30. J.-R. Duclère, C. Cibert, A. Boulle, V. Dorcet, P. Marchet, C. Champeaux, A. Catherinot, S. Députier, M. Guilloux-Viry, Thin Solid Films 517, 592 (2008)

    Article  ADS  Google Scholar 

  31. J. Hao, X. Wang, R. Chen, L. Li, Mater. Chem. Phys. 90, 282 (2005)

    Article  Google Scholar 

  32. L. Luo, P. Du, W. Li, W. Tao, H. Chen, J. Appl. Phys. 114, 124104 (2013)

    Article  ADS  Google Scholar 

  33. Hong Zhou, Xiang Liu, Ni Qin, Dinghua Bao, J. Appl. Phys. 110, 034102 (2011)

    Article  ADS  Google Scholar 

  34. John Wang, Zhaohui Zhou, Junmin Xue, Acta Mater. 54, 1691 (2006)

    Article  Google Scholar 

  35. C.Y. Kim, T. Sekino, K. Niihara, J. Am. Ceram. Soc. 86(9), 1464 (2003)

    Article  Google Scholar 

  36. M. Zannen, H. Khemakhem, A. Kabadou, M. Es-Souni, J. Alloy. Compd. 555, 56 (2013)

    Article  Google Scholar 

  37. M.S. Zhang, J.F. Scott, Ferroelectr. Lett. 6, 147 (1986)

    Article  Google Scholar 

  38. S. Saïd, P. Marchet, T. Merle-Méjean, J.-P. Mercurio, Mater. Lett. 58, 1405 (2004)

    Article  Google Scholar 

  39. J. Kreisel, A.M. Glazer, G. Jones, P.A. Thomas, L. Abello, G. Lucazeau, J. Phys.: Condens. Matter 12, 3267 (2000)

    ADS  Google Scholar 

  40. I.G. Siny, E. Husson, J.M. Beny, S.G. Lushnikov, E.A. Rogacheva, P.P. Syrnikov, Ferroelectrics 248, 57 (2000)

    Article  Google Scholar 

  41. J. Petzelt, S. Kamba, J. Fabry, D. Noujni, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, R. Klein, G.E. Kugel, J. Phys. Condens. Matter 16, 2719 (2004)

    Article  ADS  Google Scholar 

  42. P. Haro-Gonzalez, M. Bettinelli, N.E. Capuj, F. Lahoz, I.R. Martin, E. Cavalli, S. Gonzalez-Perez, Opt. Mater. 32, 475 (2010)

    Article  ADS  Google Scholar 

  43. P. Westbergh, J.S. Gustavsson, A. Haglund, M. Skold, A. Joel, A. Larsson, IEEE J. Sel. Top. Quantum Electron. 15, 694 (2009)

    Article  Google Scholar 

  44. Y. Ding, G. Zhao, J. Chen, Q. Dong, Y. Nakai, T. Tsuboi, J Lumin 131, 1577 (2011)

    Article  Google Scholar 

  45. C. Shen, Q. Liu, Q.F. Liu, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 111, 31 (2004)

    Article  Google Scholar 

  46. J. Wang, T. Zhang, R. Pan, Z. Ma, J. Wang, Physica B 407, 160 (2012)

    Article  ADS  Google Scholar 

  47. H.J. Guggenheim, L.F. Johnson, Appl. Phys. Lett. 15, 51 (1969)

    Article  ADS  Google Scholar 

  48. K. Yang, S. Zhao, G. Li, Opt. Quantum Electron. 37, 875 (2005)

    Article  Google Scholar 

  49. B.R. Judd, Phys. Rev. 127, 750 (1962)

    Article  ADS  Google Scholar 

  50. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)

    Article  ADS  Google Scholar 

  51. W.C. Nieupoort, G. Blasse, Solid State Commun. 4, 227 (1966)

    Article  ADS  Google Scholar 

  52. G. Blasse, A. Bril, Philips Res. Rep. 21, 368 (1966)

    Google Scholar 

  53. M. Méndez, J.J. Carvajal, Y. Cesteros, M. Aguiló, F. Díaz, A. Giguère, D. Drouin, E. Martínez-Ferrero, P. Salagre, P. Formentín, J. Pallarès, L.F. Marsal, Opt. Mater. 32, 1686 (2010)

    Article  ADS  Google Scholar 

  54. M. Mączka, A. Bednarkiewicz, E.M. Mendoza, A.F. Fuentes, L. Kępiński, J. Solid State Chem. 194, 264 (2012)

    Article  ADS  Google Scholar 

  55. B.H. Chen, J.F. Yu, X. Liang, Langmuir 27, 11654 (2011)

    Article  Google Scholar 

  56. Xu Jinbao, Yun Liu, Ray L. Withers, Frank Brink, Hui Yang, Mark Wang, J. Appl. Phys. 104, 116101 (2008)

    Article  ADS  Google Scholar 

  57. T. Yu, K.W. Kwok, H.L.W. Chan, Thin Solid Films 515, 3563 (2007)

    Article  ADS  Google Scholar 

  58. Z.H. Zhou, J.M. Xue, W.Z. Li, J. Wang, H. Zhu, J.M. Miao, J. Phys. D Appl. Phys. 38, 642 (2005)

    Article  ADS  Google Scholar 

  59. Z.H. Zhou, J.M. Xue, W.Z. Li, J. Wang, H. Zhu, J.M. Miao, Appl. Phys. Lett. 85, 804 (2004)

    Article  ADS  Google Scholar 

  60. S. Quignon, C. Soyer, D. Remiens, J. Am. Ceram. Soc. 95(10), 3180 (2012)

    Article  Google Scholar 

  61. X.-G. Tang, J. Wang, X.-X. Wang, H.L.W. Chan, Chem. Mater. 16(25), 5293 (2004)

    Article  Google Scholar 

  62. M. Bousquet, J.-R. Duclère, C. Champeaux, A. Boulle, P. Marchet, A. Catherinot, A. Wu, P.M. Vilarinho, S. Députier, M. Guilloux-Viry, A. Crunteanu, B. Gautier, D. Albertini, C. Bachelet, J. Appl. Phys. 107, 034102 (2010)

    Article  ADS  Google Scholar 

  63. X.X. Wang, S.H. Choy, X.G. Tang, H.L.W. Chan, J. Appl. Phys. 97, 104101 (2005)

    Article  ADS  Google Scholar 

  64. Ronald E. Cohen, Nature 358, 136 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Es-Souni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zannen, M., Dietze, M., Khemakhem, H. et al. Ferroelectric (Na1/2Bi1/2)TiO3 thin films showing photoluminescence properties. Appl. Phys. A 117, 1485–1490 (2014). https://doi.org/10.1007/s00339-014-8581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8581-2

Keywords

Navigation