Skip to main content

Advertisement

Log in

Strong genetic differentiation demarks populations of Favia across biogeographic regions of the Atlantic Ocean

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Understanding how populations are inter-connected can help identify species that are vulnerable or those that are likely to persist over ecological and evolutionary time scales. Favia fragum and Favia gravida are sister species of brooding corals common in the Atlantic Ocean that are secondary reef-builders that contribute to habitat complexity in intertidal and shallow-water coral reefs. To better understand population connectivity in these two congeneric species with broad and presumably non-overlapping distributions, one single-copy nuclear marker (masc1) and one ribosomal marker (ITS) were used to estimate population genetic parameters for Favia in four biogeographic regions: the Caribbean, Brazilian, Ascension and Tropical Eastern Atlantic provinces. Strong and significant levels of population structure were found among all four biogeographic regions, with each province being characterized by nearly all private alleles. Phylogenetic analyses based on each gene and on a combined marker analysis showed strong support for three sister clades composed of individuals from either the Caribbean, South Atlantic (Brazilian + Tropical Eastern Atlantic), or Ascension provinces. However, low genetic diversity was observed at each location, and no differentiation was observed among populations along the entire coast of Brazil (~ 1600 km). Furthermore, the Tropical Eastern Atlantic was likely colonized by at least two independent founder events, one from the Caribbean and another from the Brazilian provinces. Life-history traits of the genus might explain the different patterns found. Favia fragum and F. gravida release zooxanthellae larvae monthly and may be capable of rafting, which could favor occasional long-distance dispersal. On the other hand, they are capable of self-fertilization and commonly disperse over a few meters which may explain low genetic variability locally. Our results show that while long-distance migration events are possible for Favia corals, they are insufficient to maintain connectivity across biogeographic regions. Lastly, the Ascension Island population was more divergent than the sister clades composed of Caribbean or South Atlantic Favia, indicating a possible cryptic lineage, but further work may clarify species boundaries within the Atlantic coral genus Favia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amaral FD, Ramos CAC (2007) Skeletal variability of the coral Favia gravida (Verril, 1868) from Brazil. Biota Neotrop 7:245–251

    Article  Google Scholar 

  • Arruda WZ, Campos EJD, Zharkov V, Soutelino RG, da Silveira ICA (2013) Events of equatorward translation of the Vitoria Eddy. Cont Shelf Res 70:61–73

    Article  Google Scholar 

  • Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol Syst 40:551–571

    Article  Google Scholar 

  • Barnes DKA, Milner P (2005) Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Mar Biol 146:815–825

    Article  Google Scholar 

  • Bernardi G, Robertson DR, Clifton KE, Azzurro E (2000) Molecular systematics, zoogeography, and evolutionary ecology of the Atlantic parrotfish genus Sparisoma. Mol Phylogenet Evol 15:292–300

    Article  CAS  PubMed  Google Scholar 

  • Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Drummond AJ (2019) BEAST 2 5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput Biol 15(4):e1006650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazeau DA, Gleason DF, Morgan ME (1998) Self-fertilization in brooding hermaphroditic Caribbean corals: evidence from molecular markers. J Exp Mar Bio Ecol 231:225–238

    Article  Google Scholar 

  • Briggs JC, Bowen BW (2013) Marine shelf habitat: biogeography and evolution. J Biogeogr 40:1023–1035

    Article  Google Scholar 

  • Brown J, Downes K, Mrowicki RJ, Nolan EL, Richardson AJ, Swinnen F, Peter W (2016) New records of marine invertebrates from Ascension Island (central Atlantic). Arquipélago Life Mar Sci 33:71–79

    Google Scholar 

  • Budd AF, Fukami H, Smith ND, Knowlton N (2012a) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 166:465–529

    Article  Google Scholar 

  • Budd AF, Nunes FLD, Weil E, Pandolfi JM (2012b) Polymorphism in a common Atlantic reef coral (Montastraea cavernosa) and its long-term evolutionary implications. Evol Ecol 26:265–290

    Article  Google Scholar 

  • Cairns SD, Hoeksema BW, Van der Land J (1999) Appendix: list of extant stony corals. Atoll Res Bull 459:13–46

    Google Scholar 

  • Calderon EN, Castro CB, Pires DO (2000) Natação, assentamento e metamorfose de plânulas do coral Favia gravida Verrill, 1868 (Cnidaria, Scleractinia). Bol do Mus Nac Nov Série, Zool 1–12

  • Carlon DB, Olson RR (1993) Larval dispersal distance as an explanation for adult spatial pattern in two Caribbean reef corals. J Exp Mar Biol Ecol 173(2):247–263

    Article  Google Scholar 

  • Carlon DB (1999) The evolution of mating systems in tropical reef corals. Trends Ecol Evol 14:491–495

    Article  CAS  PubMed  Google Scholar 

  • Carlon DB, Budd AF (2002) Incipient speciation across a depth gradient in a scleractinian coral? Evolution 56(11):2227–2242

    PubMed  Google Scholar 

  • Carlon DB, Lippé C (2011) Estimation of mating systems in Short and Tall ecomorphs of the coral Favia fragum. Mol Ecol 20:812–828

    Article  PubMed  Google Scholar 

  • Castro CB, Pires DO (2001) Brazilian coral reefs: what we already know and what is still missing. Bull Mar Sci 69:357–371

    Google Scholar 

  • Charlesworth B (2009) Effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195–205

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Ann Rev Mar Sci 1:443–466

    Article  PubMed  Google Scholar 

  • Crandall KA (1994) Intraspecific cladogram estimation: accuracy at higher levels of divergence. Syst Biol 43:222–235

    Article  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma 1:47–50

    Article  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feingold JS, Riegl B, Hendrickson K, Toth LT, Cheng H, Edwards RL, Aronson RB (2020) 7700-year persistence of an isolated, free-living coral assemblage in the Galápagos Islands: a model for coral refugia? Coral Reefs 39:639–647

    Article  Google Scholar 

  • Fernandes M, Leal J, Pimenta A (2013) Taxonomic review of Triphorinae (Gastropoda: Triphoridae) from the Vitoria-Trindade Seamount Chain, southeastern Brazil. Nautilus (Philadelphia) 127:1–18

    Google Scholar 

  • Floeter SR, Rocha LA, Robertson DR, Joyeux JC, Smith-Vaniz WF, Wirtz P, Edwards AJ, Barreiros JP, Ferreira CEL, Gasparini JL, Brito A, Falcón JM, Bowen BW, Bernardi G (2008) Atlantic reef fish biogeography and evolution. J Biogeogr 35:22–47

    Google Scholar 

  • Forsman ZH, Barshis DJ, Hunter CL, Toonen RJ (2009) Shape-shifting corals: molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol Biol 9:1–9

    Article  CAS  Google Scholar 

  • Frade PR, Reyes-Nivia MC, Faria J, Kaandorp JA, Luttikhuizen PC, Bak RPM (2010) Semi-permeable species boundaries in the coral genus Madracis: introgression in a brooding coral system. Mol Phylogenet Evol 57:1072–1090

    Article  CAS  PubMed  Google Scholar 

  • Freire AS, Teschima MM, Brandão MC, Iwasa-Arai T, Sobral FC, Sasaki DK, Agostinis AO, Pie MR (2021) Does the transport of larvae throughout the south Atlantic support the genetic and morphometric diversity of the Sally Lightfoot Crabs Grapsus grapsus (Linnaeus, 1758) and Grapsus adscensionis (Osbeck, 1765)(Decapoda: Grapsidae) among the oceanic islands? J Marine Syst 223:103614

    Article  Google Scholar 

  • Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution (n y) 58:324–337

    CAS  Google Scholar 

  • Goodbody-Gringley G, Vollmer SV, Woollacott RM, Giribet G (2010) Limited gene flow in the brooding coral Favia fragum (Esper, 1797). Mar Biol 157:2591–2602

    Article  Google Scholar 

  • Goodbody-Gringley G, Woollacott RM, Giribet G (2012) Population structure and connectivity in the Atlantic scleractinian coral Montastraea cavernosa (Linnaeus, 1767). Mar Ecol 33:32–48

    Article  CAS  Google Scholar 

  • Hoeksema BW (2012) Extreme morphological plasticity enables a free mode of life in Favia gravida at Ascension Island (South Atlantic). Mar Biodivers 42(2):289–295

    Article  Google Scholar 

  • Hoeksema BW, Wirtz P (2013) Over 130 years of survival by a small, isolated population of Favia gravida corals at Ascension Island (South Atlantic). Coral Reefs 32:551

    Article  Google Scholar 

  • Hoorn C (1996) Miocene deposits in the Amazon foreland basin. Science 273:122–125

    Article  CAS  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laborel J (1970) Les peuplements de madréporaires des côtes tropicales du Brésil. Annales De L’université D’abidjan (série e) 2(3):1–260

    Google Scholar 

  • Laborel J (1974) West african reefs corals: a hypothesis on their origin. Proc 2nd Int Coral Reef Symp 1:425–443

  • Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution (n y) 55:955

    CAS  Google Scholar 

  • Lessios HA, Kessing BD, Robertson DR, Paulay G (1999) Phylogeography of the pantropical sea urchin Eucidaris in relation to land barriers and ocean currents. Evolution (n y) 53:806

    CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Luiz OJ, Madin JS, Ross Robertson D, Rocha LA, Wirtz P, Floeter SR (2012) Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes. Proc R Soc B Biol Sci 279:1033–1040

    Article  Google Scholar 

  • Macieira RM, Simon T, Pimentel CR, Joyeux JC (2015) Isolation and speciation of tidepool fishes as a consequence of Quaternary sea-level fluctuations. Environ Biol Fishes 98:385–393

    Article  Google Scholar 

  • Manning RB, Chace FAJ (1990) Decapod and Stomatopod Crustacea from Ascension Island South Atlantic Ocean Smithsonian Contributions to zoology. Smithsonian Institution Press, Washington

    Google Scholar 

  • Mao YEP, Economo EP, Satoh N (2018) The roles of introgression and climate change in the rise to dominance of Acropora corals. Curr Biol 28:3373–3382

    Article  CAS  PubMed  Google Scholar 

  • Mccartney MA, Keller G, Lessios HA (2000) Dispersal barriers in tropical oceans and speciation in Atlantic and eastern Pacific sea urchins of the genus Echinometra. Mol Ecol 9:1391–1400

    Article  CAS  PubMed  Google Scholar 

  • Medina M, Weil E, Szmant A (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Mar Biotechnol 1:89–97

    Article  CAS  Google Scholar 

  • Meirelles PM, Amado-Filho GM, Pereira-Filho GH, Pinheiro HT, De Moura RL, Joyeux JC, Mazzei EF, Bastos AC, Edwards RA, Dinsdale E, Paranhos R, Santos EO, Iida T, Gotoh K, Nakamura S, Sawabe T, Rezende CE, Gadelha LMR, Francini-Filho RB, Thompson C, Thompson FL (2015) Baseline assessment of mesophotic reefs of the Vitória-Trindade Seamount Chain based on water quality, microbial diversity, benthic cover and fish biomass data. PLoS ONE 10:1–22

    Article  CAS  Google Scholar 

  • Moura RL, Amado-filho GM, Moraes FC, Brasileiro PS, Salomon PS, Mahiques MM, Bastos AC, Almeida MG, Araujo BF, Brito FP, Rangel TP, Oliveira BCV, Bahia RG, Paranhos RP, Dias RJS, Siegle E, Pereira RC, Leal CV, Hajdu E, Asp NE, Gregoracci GB, Neumann-leitão S, Yager PL, Francini-filho RB, Fróes A, Campeão M, Silva BS, Moreira APB, Oliveira L, Soares AC, Araujo L, Oliveira NL, Teixeira JB, Valle RAB, Thompson CC, Rezende CE, Thompson FL (2016) An extensive reef system at the Amazon River mouth. Sci Adv 2:1–12

    Article  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Neves EG, Silveira FL, Pichon M, Johnsson R (2010) Cnidaria, Scleractinia, Siderastreidae, Siderastrea siderea (Ellis and Solander, 1786): Hartt Expedition and the first record of a Caribbean siderastreid in tropical Southwestern Atlantic. Check List 6:505–510

    Article  Google Scholar 

  • Nunes F, Fukami H, Vollmer SV, Norris RD, Knowlton N (2008) Re-evaluation of the systematics of the en demic corals of Brazil by molecular data. Coral Reefs 27:423–432

    Article  Google Scholar 

  • Nunes F, Norris RD, Knowlton N (2009) Implications of isolation and low genetic diversity in peripheral populations of an amphi-Atlantic coral. Mol Ecol 18:4283–4297

    Article  CAS  PubMed  Google Scholar 

  • Nunes FLD, Norris RD, Knowlton N (2011) Long distance dispersal and connectivity in amphi-Atlantic corals at regional and basin scales. PLoS One 6:e22298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes FLD, Wormhoudt A Van, Faroni-perez L, Ifremer IRD (2016) Phylogeography of the reef-building polychaetes of the genus Phragmatopoma in the western Atlantic Region. J Biogeogr 1–14

  • Padula V, Wirtz P, Schrödl M (2017) Heterobranch sea slugs (Mollusca: Gastropoda) from Ascension Island, South Atlantic Ocean. J Mar Biol Assoc UK 97:743–752

    Article  Google Scholar 

  • Peluso L, Tascheri V, Nunes FLD, Castro CB, Pires DO, Zilberberg C (2018) Contemporary and historical oceanographic processes explain genetic connectivity in a Southwestern Atlantic coral. Sci Rep 8:1–12

    Article  CAS  Google Scholar 

  • Polidoro BA, Ralph GM, Strongin K, Harvey M, Carpenter KE, Arnold R, Buchanan JR, Camara KMA, Collette BB, Comeros-Raynal MT, de Bruyne G, Gon O, Harold AS, Harwell H, Hulley PA, Iwamoto T, Knudsen SW, de Lewembe JD, Linardich C, Lindeman KC, Monteiro V, Munroe T, Nunoo FKE, Pollock CM, Poss S, Russell B, Sayer C, Sidibe A, Smith-Vaniz W, Stump E, Sylla M, de Tito ML, Vié JC, Williams A (2017) The status of marine biodiversity in the Eastern Central Atlantic (West and Central Africa). Aquat Conserv Mar Freshw Ecosyst 27:1021–1034

    Article  Google Scholar 

  • Pont-Kingdon GA, Okada NA, Macfarlane JL, Beagley CT, Wolstenholme DR, Cavalier-Smith T, Clark-Walker GD (1995) A coral mitochondrial MutS gene. Nature 375:109–111

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (2009) FigTree v.1.3.1. [computer program]. Available from: http://tree.bio.ed.ac.uk/software/figtree/.

  • Reimer JD, Lorion J, Irei Y, Hoeksema BW, Wirtz P (2014) Ascension Island shallow-water Zoantharia (Hexacorallia: Cnidaria) and their zooxanthellae (Symbiodinium). J Mar Biol Assoc UK 97:695–703

    Article  CAS  Google Scholar 

  • Rocha LA (2003) Patterns of distribution and processes of speciation in Brazilian reef fishes. J Biogeogr 30:1161–1171

    Article  Google Scholar 

  • Santos AM, Cabezas MP, Tavares AI, Xavier R, Branco M (2015) Genetics and population analysis tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics 32:627–628

    Article  CAS  Google Scholar 

  • Schwartz SA, Budd AF, Carlon DB (2012) Molecules and fossils reveal punctuated diversification in Caribbean “faviid” corals. BMC Evol Biol 12:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Severance EG, Szmant AM, Karl SA (2004) Single-copy gene markers isolated from the Caribbean coral, Montastraea annularis. Mol Ecol Notes 4:167–169

    Article  CAS  Google Scholar 

  • Shearer TL, Van Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11(12):2475–2487

    Article  CAS  PubMed  Google Scholar 

  • de Souza JN, Nunes LD, Zilberberg C, Sanchez JA, Migotto AE, Hoeksema BW, Serrano XM, Baker A, Lindner A (2017) Contrasting patterns of connectivity among endemic and widespread fire coral species (Millepora spp.) in the tropical Southwestern Atlantic. Coral Reefs 36:701–716

    Article  Google Scholar 

  • Spalding MD, Ravilious C, Green EP (2002) World Atlas of Coral Reefs.

  • Stramma L, Fischer J, Brandt P, Schott F (2003) Circulation, variability and near-equatorial meridional flow in the central tropical Atlantic. Elsevier Oceanogr Ser 68:1–22

    Article  Google Scholar 

  • Szmant-Froelich A, Reutter M, Riggs L (1985) Sexual reproduction of Favia fragum (Esper): lunar patterns of gametogenesis, embryogenesis and planulation in Puerto Rico. Coral Reef Pap 37:880–892

    Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data III Cladogram estimation. Genetics 132:619–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teschima MM, Garrido A, Paris A, Nunes FLD, Zilberberg C (2019) Biogeography of the endosymbiotic dinoflagellates (Symbiodiniaceae) community associated with the brooding coral Favia gravida in the Atlantic Ocean. PLoS ONE 14:1–18

    Google Scholar 

  • Toonen RJ, Bowen BW, Iacchei M, Briggs JC (2016) Marine Biogeography. Encyclopedia of Evolutionary Biology. pp 166–178

  • Tourinho JL, Solé-Cava AM, Lazoski C (2012) Cryptic species within the commercially most important lobster in the tropical Atlantic, the spiny lobster Panulirus argus. Mar Biol 159:1897–1906

    Article  Google Scholar 

  • Veron JE. (2000) Corals of the World. Australian Institute of Marine Science. Townville

  • Walton Smith FG (1971) Atlantic Reef Corals: A handbook of the common reef and shallow-water corals of Bermuda, the Bahamas, Florida, the West Indies and Brazil. University of Miami Press, Florida

    Google Scholar 

  • Zibrowius H, Wirtz P, Nunes FLD, Hoeksema BW, Benzoni F (2014) Shallow-water scleractinian corals of Ascension Island, Central South Atlantic. J Mar Biol Assoc UK 97:713–725

    Article  CAS  Google Scholar 

  • Zlatarski VN, Estalella NM (1982) Les Scléractiniaires de Cuba avec des données sur les organismes associés.

Download references

Acknowledgements

We are grateful to SISBIOTA–Mar (CNPq 563276/2010-0, PI: SR Floeter) PELD-ILOC (CNPq 403740/2012-6 PI: CEL Ferreira), MS Barbeitos, NL Dantec, AS Freire, GO Longo, and K Nickols for their help collecting coral samples and J Evrard for assistance in the molecular lab. This study was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 to MM Teschima, and by the ISblue project, Interdisciplinary graduate School for the blue planet (ANR-17-EURE-0015), co-funded by a grant from the French government under the program "Investissements d'Avenir'' for a mobility grant to MM Teschima.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana M. Teschima.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Morgan S. Pratchett

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 250 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teschima, M.M., Zilberberg, C. & Nunes, F.L.D. Strong genetic differentiation demarks populations of Favia across biogeographic regions of the Atlantic Ocean. Coral Reefs 41, 523–534 (2022). https://doi.org/10.1007/s00338-021-02203-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-021-02203-w

Keywords

Navigation