Skip to main content

Advertisement

Log in

Expansion of corals on temperate reefs: direct and indirect effects of marine heatwaves

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Globally, many temperate marine communities have experienced significant temperature increases over recent decades in the form of gradual warming and heatwaves. As a result, these communities are shifting towards increasingly subtropical and tropical species compositions. Expanding coral populations have been reported from several temperate reef ecosystems along warming coastlines; these changes have been attributed to direct effects of gradual warming over decades. In contrast, increases in coral populations following shorter-term extreme warming events have rarely been documented. In this study, we compared coral populations on 17 temperate reefs in Western Australia before (2005/06) and after (2013) multiple marine heatwaves (2010–2012) affected the entire coastline. We hypothesised that coral communities would expand and change as a consequence of increasing local populations and recruitment of warm-affinity species. We found differences in coral community structure over time, driven primarily by a fourfold increase of one local species, Plesiastrea versipora, rather than recruitment of warm-affinity species. Coral populations became strongly dominated by small size classes, indicative of recent increased recruitment or recruit survival. These changes were likely facilitated by competitive release of corals from dominant temperate seaweeds, which perished during the heatwaves, rather than driven by direct temperature effects. Overall, as corals are inherently warm-water taxa not commonly associated with seaweed-dominated temperate reefs, these findings are consistent with a net tropicalisation. Our study draws attention to processes other than gradual warming that also influence the trajectory of temperate reefs in a changing ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdo DA, Bellchambers LM, Evans SN (2012) Turning up the heat: increasing temperature and coral bleaching at the high latitude coral reefs of the Houtman Abrolhos Islands. PLoS ONE 7:e43878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA for PRIMER: guide to software and statistical methods. PRIMER-E Ltd., Plymouth

    Google Scholar 

  • Baird AH, Sommer B, Madin JS (2012) Pole-ward range expansion of Acropora spp. along the east coast of Australia. Coral Reefs 31:1063

    Article  Google Scholar 

  • Bassim KM, Sammarco PW (2003) Effects of temperature and ammonium on larval development and survivorship in a scleractinian coral (Diplora strigosa). Mar Biol 142:241–252

    Article  CAS  Google Scholar 

  • Bennett S, Wernberg T, Harvey ES, Santana-Garcon J, Saunders BJ (2015) Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol Lett 18:714–723

    Article  PubMed  Google Scholar 

  • Bennett S, Wernberg T, Connell SD, Hobday AJ, Johnson CR, Poloczanska ES (2016) The ‘Great Southern Reef’: social, ecological and economic value of Australia’s neglected kelp forests. Mar Freshw Res 67:47–56

    Article  Google Scholar 

  • Burgess SN, McCulloch MT, Mortimer GE, Ward TM (2009) Structure and growth rates of the high-latitude coral Plesiastrea versipora. Coral Reefs 28:1005–1015

    Article  Google Scholar 

  • Carricart-Ganivet JP (2004) Sea surface temperature and the growth of the west Atlantic reef-building coral Montastraea annularis. J Exp Mar Biol Ecol 302:249–260

    Article  Google Scholar 

  • Coyer JA, Ambrose RF, Engle JM, Carroll JC (1993) Interactions between corals and algae on a temperate zone rocky reef: mediation by sea urchins. J Exp Mar Biol Ecol 167:21–37

    Article  Google Scholar 

  • Denis V, Mezaki T, Tanaka K, Kuo CY, De Palmas S, Keshavmurthy S, Chen CA (2013) Coverage, diversity, and functionality of a high-latitude coral community (Tatsukushi, Shikoku Island, Japan). PLoS ONE 8:e54330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denis V, Ribas-Deulofeu L, Loubeyres M, De Palmas S, Hwang S-J, Woo S, Song J-I, Chen CA (2014) Recruitment of the subtropical coral Alveopora japonica in the temperate waters of Jeju Island, South Korea. Bull Mar Sci 91:85–96

    Article  Google Scholar 

  • Edmunds PJ, Gates RD, Gleason DF (2001) The biology of larvae from the reef coral Porites asteroides and their response to temperature disturbances. Mar Biol 139:981–989

    Article  Google Scholar 

  • Foster T, Short JA, Falter JL, Ross C, McCulloch MT (2014) Reduced calcification in Western Australian corals during anomalously high summer water temperatures. J Exp Mar Biol Ecol 461:133–143

    Article  CAS  Google Scholar 

  • Fromont J, Hass C, Marsh L, Moore G, Salotti M, Titelius M, Whisson C (2006) Biodiversity of marine fauna on the Central West Coast, SRFME final milestone report—December 2006. Western Australian Museum, Perth, WA

  • Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, Ledoux JB, Lejeusne C, Linares C, Marschal C, Pérez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C (2009) Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Change Biol 15:1090–1103

    Article  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

    Article  CAS  PubMed  Google Scholar 

  • Graham EM, Baird AH, Connolly SR (2008) Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27:529–539

    Article  Google Scholar 

  • Greenstein BJ, Pandolfi JM (2008) Escaping the heat: range shifts of reef coral taxa in coastal Western Australia. Glob Chang Biol 14:513–528

    Article  Google Scholar 

  • Harrison PL, Dalton SJ, Carroll AG (2011) Extensive coral bleaching on the world’s southernmost coral reef at Lord Howe Island, Australia. Coral Reefs 30:775

    Article  Google Scholar 

  • Heyward AJ, Negri AP (2010) Plasticity of larval pre-competency in response to temperature: observations on multiple broadcast spawning coral species. Coral Reefs 29:631–636

    Article  Google Scholar 

  • Hobday AJ, Pecl GT (2013) Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev Fish Biol Fish 24:415–425

    Article  Google Scholar 

  • Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver ECJ, Benthuysen JA, Burrows MT, Donat MG, Feng M, Holbrook NJ, Moore PJ, Scannell HA, Sen Gupta A, Wernberg T (2016) A hierarchical approach to defining marine heatwaves. Prog Oceanogr 141:227–238

    Article  Google Scholar 

  • Keith SA, Woolsey ES, Madin JS, Byrne M, Baird AH (2015) Differential establishment potential of species predicts a shift in coral assemblage structure across a biogeographic barrier. Ecography 38:1225–1234

    Article  Google Scholar 

  • Kersting DK, Bensoussan N, Linares C (2013) Long-term responses of the endemic reef-builder Cladocora caespitosa to Mediterranean warming. PLoS ONE 8:e70820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafratta A, Fromont J, Speare P, Schönberg CHL (2016) Coral bleaching in turbid waters of north-western Australia. Mar Freshw Res 68:65–75

    Google Scholar 

  • Last PR, White WT, Gledhill DC, Hobday AJ, Brown R, Edgar GJ, Pecl G (2011) Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Glob Ecol Biogeog 20:58–72

    Article  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243

    Article  CAS  PubMed  Google Scholar 

  • Markey KL, Abdo DA, Evans SN, Bosserelle C (2016) Keeping it local: dispersal limitations of coral larvae to the high latitude coral reefs of the Houtman Abrolhos Islands. PLoS ONE 11:e0147628

    Article  PubMed  PubMed Central  Google Scholar 

  • Mezaki T, Kubota S (2012) Changes of hermatypic coral community in coastal sea area of Kochi, high-latitude, Japan. Aquabiology 201:332–337

    Google Scholar 

  • Miller MW, Hay ME (1996) Coral–seaweed–grazer–nutrient interactions on temperate reefs. Ecol Monogr 66:323–344

    Article  Google Scholar 

  • Mizerek TL, Baird AH, Beaumont LJ, Madin JS (2016) Environmental tolerance governs the presence of reef corals at latitudes beyond reef growth. Glob Ecol Biogeogr 25:979–987

    Article  Google Scholar 

  • Moore JA, Bellchambers LM, Depczynski MR, Evans RD, Evans SN, Field SN, Friedman KJ, Gilmour JP, Holmes TH, Middlebrook R, Radford BT, Ridgway T, Shedrawi G, Taylor H, Thomson DP, Wilson SK (2012) Unprecedented mass bleaching and loss of coral across 12 degrees of latitude in Western Australia in 2010–11. PLoS ONE 7:e51807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Feary DA, Kanda M, Yamaoka K (2013) Tropical fishes dominate temperate reef fish communities within western Japan. PLoS ONE 8:e81107

    Article  PubMed  PubMed Central  Google Scholar 

  • Nozawa Y, Harrison PL (2000) Larval settlement patterns, dispersal potential, and the effect of temperature on settlement of larvae of the reef coral, Platygyra daedalea, from the Great Barrier Reef. In: Proceedings of the 9th international coral reef symposium, vol 1, pp 409–416

  • Nozawa Y, Harrison PL (2007) Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Mar Biol 152:1181–1185

    Article  Google Scholar 

  • Pearce A, Feng M (2013) The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J Mar Syst 111–112:139–156

    Article  Google Scholar 

  • Pearce A, Lenanton R, Jackson G, Moore J, Feng M, Gaughan D (2011) The “marine heat wave” off Western Australia during the summer of 2010/11. Fisheries research report no. 222, Department of Fisheries, Perth, Western Australia

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915

    Article  CAS  PubMed  Google Scholar 

  • Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ (2013) Global imprint of climate change on marine life. Nat Clim Chang 3:919–925

    Article  Google Scholar 

  • Precht WF, Aronson RB (2004) Climate flickers and range shifts of reef corals. Front Ecol Environ 2:307–314

    Article  Google Scholar 

  • Randall CJ, Szmant AM (2009) Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28:537–545

    Article  Google Scholar 

  • Richards Z, Kirkendale L, Moore G, Hosie A, Huisman J, Bryce M, Marsh L, Bryce C, Hara A, Wilson N, Morrison S, Gomez O, Ritchie J, Whisson C, Allen M, Betterridge L, Wood C, Morrison H, Salotti M, Hansen G, Slack-Smith S, Fromont J (2016) Marine biodiversity in temperate Western Australia: multi-taxon surveys of Minden and Roe Reefs. Diversity 8:7

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Richard C, Allemand D, Ferrier-Pages C (2006) Growth and photosynthesis of two Mediterranean corals, Cladocora caespitosa and Oculina patagonica, under normal and elevated temperatures. J Exp Biol 209:4546–4556

    Article  PubMed  Google Scholar 

  • Ross C, Ritson-Williams R, Olsen K, Paul VJ (2013) Short-term and latent post-settlement effects associated with elevated temperature and oxidative stress on larvae from the coral Porites astreoides. Coral Reefs 32:71–79

    Article  Google Scholar 

  • Schiel DR, Foster MS (1986) The structure of subtidal algal stands in temperate waters. Oceanogr Mar Biol Annu Rev 24:265–307

    Google Scholar 

  • Serrano E, Coma R, Ribes M (2012) A phase shift from macroalgal to coral dominance in the Mediterranean. Coral Reefs 31:1199

    Article  Google Scholar 

  • Serrano E, Coma R, Ribes M, Weitzmann B, Garcia M, Ballesteros E (2013) Rapid northward spread of a zooxanthellate coral enhanced by artificial structures and sea warming in the western Mediterranean. PLoS ONE 8:e52739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smale DA, Wernberg T (2012) Ecological observations associated with an anomalous warming event at the Houtman Abrolhos Islands, Western Australia. Coral Reefs 31:441

    Article  Google Scholar 

  • Smale DA, Wernberg T (2013) Extreme climatic event drives range contraction of a habitat-forming species. Proc R Soc Lond B Biol Sci 280:20122829

    Article  Google Scholar 

  • Sommer B, Harrison PL, Beger M, Pandolfi JM (2014) Trait-mediated environmental filtering drives assembly at biogeographic transition zones. Ecology 95:1000–1009

    Article  PubMed  Google Scholar 

  • Steneck RS, Johnson CR (2013) Kelp forests: dynamic patterns, processes and feedbacks. In: Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ (eds) Marine community ecology and conservation. Sinauer Associates, Sunderland, pp 315–336

    Google Scholar 

  • Sturges HA (1926) The choice of a class interval. J Am Stat Assoc 21:65–66

    Article  Google Scholar 

  • Thomson DP (2010) Range extension of the hard coral Goniopora norfolkensis (Veron & Pichon 1982) to the south-east Indian Ocean. J R Soc West Aust 93:81–83

    Google Scholar 

  • Thomson DP, Bearham D, Graham F, Eagle JV (2011) High latitude, deeper water coral bleaching at Rottnest Island, Western Australia. Coral Reefs 30:1107

    Article  Google Scholar 

  • Thomson DP, Babcock RC, Vanderklift MA, Symonds G, Gunson JR (2012) Evidence for persistent patch structure on temperate reefs and multiple hypotheses for their creation and maintenance. Estuar Coast Shelf Sci 96:105–113

    Google Scholar 

  • Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, Worm B (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Vergés A, Tomas F, Cebrian E, Ballesteros E, Kizilkaya Z, Dendrinos P, Karamanlidis AA, Spiegel D, Sala E (2014a) Tropical rabbitfish and the deforestation of a warming temperate sea. J Ecol 102:1518–1527

    Article  Google Scholar 

  • Vergés A, Steinberg PD, Hay ME, Poore AG, Campbell AH, Ballesteros E, Heck KL Jr, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois T, Marzinelli EM, Mizerek T, Mumby PJ, Nakamura Y, Roughan M, van Sebille E, Gupta AS, Smale DA, Tomas F, Wernberg T, Wilson SK (2014b) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc Lond B Biol Sci 281:20140846

    Article  Google Scholar 

  • Veron JEN (1993) Corals of Australia and the Indo-Pacific. University of Hawaii Press, Honolulu

    Google Scholar 

  • Veron JEN (2000) Corals of the world, vol 1–3. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN, Marsh LM (1988) Hermatypic corals of Western Australia. Records and annotated species list. Supplement. Rec West Aust Mus 29:1–136

    Google Scholar 

  • Vieira C, Keshavmurthy S, Ju S-J, Hyeong K, Seo I, Kang C-K, Hong H-K, Chen CA, Choi K-S (2016) Population dynamics of a high-latitude coral Alveopora japonica Eguchi from Jeju Island, off the southern coast of Korea. Mar Freshw Res 67:594–604

    Article  Google Scholar 

  • Wernberg T, de Bettignies T, Bijo AJ, Finnegan P (2016a) Physiological responses of habitat-forming seaweeds to increasing temperatures. Limnol Oceanogr 61:2180–2190

    Article  Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, de Bettignies T, Bennett S, Rousseaux CS (2013a) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change 3:78–82

    Article  Google Scholar 

  • Wernberg T, Russell BD, Moore PJ, Ling SD, Smale DA, Campbell A, Coleman MA, Steinberg PD, Kendrick GA, Connell SD (2011) Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J Exp Mar Biol Ecol 400:7–16

    Article  Google Scholar 

  • Wernberg T, Thomsen MS, Connell SD, Russell BD, Waters JM, Zuccarello GC, Kraft GT, Sanderson C, West JA, Gurgel CFD (2013b) The footprint of continental-scale ocean currents on the biogeography of seaweeds. PLoS ONE 8:e80168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wernberg T, Bennett S, Babcock RC, de Bettignies T, Cure K, Depczynski M, Dufois F, Fromont J, Fulton CJ, Hovey RK, Harvey ES, Holmes TH, Kendrick GA, Radford B, Santana-Garcon J, Saunders BJ, Smale DA, Thomsen MS, Tuckett CA, Tuya F, Vanderklift MA, Wilson S (2016b) Climate-driven regime shift of a temperate marine ecosystem. Science 353:169–172

    Article  CAS  PubMed  Google Scholar 

  • Yakovleva IM, Baird AH, Yamamoto HH, Bhagooli R, Nonaka M, Hidaka M (2009) Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar Ecol Prog Ser 378:105–112

    Article  CAS  Google Scholar 

  • Yamano H, Sugihara K, Nomura K (2011) Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys Res Lett 38:L04601

    Article  Google Scholar 

  • Yara Y, Oshima K, Yamanaka Y, Fujii M, Yamano H, Okada N (2011) Projection and uncertainty of the poleward range expansion of coral habitats in response to sea surface temperature warming: a multiple climate model study. Galaxea 13:11–20

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Grants to TW from the Australian Research Council (FT110100174) and the Herman Slade Foundation (HSF13-13). The initial surveys were supported by the Western Australian Museum, the CSIRO and the Strategic Research Fund for the Marine Environment. We thank Florian de Bettignies for providing a detailed map of the study region (Fig. 1). Three anonymous reviewers assisted in refining earlier drafts. The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Tuckett.

Additional information

Communicated by Biology Editor Dr. Mark J. A. Vermeij

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuckett, C.A., de Bettignies, T., Fromont, J. et al. Expansion of corals on temperate reefs: direct and indirect effects of marine heatwaves. Coral Reefs 36, 947–956 (2017). https://doi.org/10.1007/s00338-017-1586-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-017-1586-5

Keywords

Navigation