Skip to main content
Log in

Genetic controls of Tas1r3-independent sucrose consumption in mice

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

We have previously used crosses between C57BL/6ByJ (B6) and 129P3/J (129) inbred strains to map a quantitative trait locus (QTL) on mouse chromosome (Chr) 4 that affects behavioral and neural responses to sucrose. We have named it the sucrose consumption QTL 2 (Scon2), and shown that it corresponds to the Tas1r3 gene, which encodes a sweet taste receptor subunit TAS1R3. To discover other sucrose consumption QTLs, we have intercrossed B6 inbred and 129.B6-Tas1r3 congenic mice to produce F2 hybrids, in which Scon2 (Tas1r3) does not segregate, and hence does not contribute to phenotypical variation. Chromosome mapping using this F2 intercross identified two main-effect QTLs, Scon3 (Chr9) and Scon10 (Chr14), and an epistatically interacting QTL pair Scon3 (Chr9)–Scon4 (Chr1). Using serial backcrosses, congenic and consomic strains, we conducted high-resolution mapping of Scon3 and Scon4 and analyzed their epistatic interactions. We used mice with different Scon3 or Scon4 genotypes to understand whether these two QTLs influence sucrose intake via gustatory or postoral mechanisms. These studies found no evidence for involvement of the taste mechanisms, but suggested involvement of energy metabolism. Mice with the B6 Scon4 genotype drank less sucrose in two-bottle tests, and also had a higher respiratory exchange ratio and lower energy expenditure under basal conditions (when they had only chow and water available). Our results provide evidence that Scon3 and Scon4 influence mouse-to-mouse variation in sucrose intake and that both likely act through a common postoral mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Available upon request.

References

  • Alexandre-Gouabau MC, Bailly E, Moyon TL, Grit IC, Coupe B, Le Drean G, Rogniaux HJ, Parnet P (2012) Postnatal growth velocity modulates alterations of proteins involved in metabolism and neuronal plasticity in neonatal hypothalamus in rats born with intrauterine growth restriction. J Nutr Biochem 23(2):140–152

    CAS  PubMed  Google Scholar 

  • Anonymous (Mouse Genomes Project—Query SNPs, indels or SVs. 2011: Wellcome Trust Sanger Institute).

  • Ayala JE, Samuel VT, Morton GJ, Obici S, Croniger CM, Shulman GI, Wasserman DH, McGuinness OP, NIHMMPC Consortium (2010) Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech 3(9–10):525–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmanov AA, Bosak NP, Floriano WB, Inoue M, Li X, Lin C, Murovets VO, Reed DR, Zolotarev VA, Beauchamp GK (2011) Genetics of sweet taste preferences. Flavour Fragr J 26(4):286–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmanov AA, Li X, Reed DR, Ohmen JD, Li S, Chen Z, Tordoff MG, de Jong PJ, Wu C, West DB, Chatterjee A, Ross DA, Beauchamp GK (2001a) Positional cloning of the mouse saccharin preference (Sac) locus. Chem Senses 26(7):925–933

    CAS  PubMed  Google Scholar 

  • Bachmanov AA, Reed DR, Ninomiya Y, Inoue M, Tordoff MG, Price RA, Beauchamp GK (1997) Sucrose consumption in mice: major influence of two genetic loci affecting peripheral sensory responses. Mamm Genome 8(8):545–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmanov AA, Reed DR, Tordoff MG, Price RA, Beauchamp GK (1996a) Intake of ethanol, sodium chloride, sucrose, citric acid, and quinine hydrochloride solutions by mice: a genetic analysis. Behav Genet 26(6):563–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmanov AA, Reed DR, Tordoff MG, Price RA, Beauchamp GK (2001b) Nutrient preference and diet-induced adiposity in C57BL/6ByJ and 129P3/J mice. Physiol Behav 72(4):603–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmanov AA, Tordoff MG, Beauchamp GK (1996b) Ethanol consumption and taste preferences in C57BL/6ByJ and 129/J mice. Alcohol Clin Exp Res 20(2):201–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmanov AA, Tordoff MG, Beauchamp GK (2001c) Sweetener preference of C57BL/6ByJ and 129P3/J mice. Chem Senses 26(7):905–913

    CAS  PubMed  Google Scholar 

  • Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41(Database issue):D991–D995

    CAS  PubMed  Google Scholar 

  • Baumeier C, Kaiser D, Heeren J, Scheja L, John C, Weise C, Eravci M, Lagerpusch M, Schulze G, Joost HG, Schwenk RW, Schurmann A (2015) Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice. Biochim Biophys Acta 1851(5):566–576

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Blizard DA, Kotlus B, Frank ME (1999) Quantitative trait loci associated with short-term intake of sucrose, saccharin and quinine solutions in laboratory mice. Chem Senses 24(4):373–385

    CAS  PubMed  Google Scholar 

  • Blizard DA, McClearn GE (2000) Association between ethanol and sucrose intake in the laboratory mouse: exploration via congenic strains and conditioned taste aversion. Alcohol Clin Exp Res 24(3):253–258

    CAS  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19(7):889–890

    CAS  PubMed  Google Scholar 

  • Buresh RA, Kuslak SL, Rusch MA, Vezina CM, Selleck SB, Marker PC (2010) Sulfatase 1 is an inhibitor of ductal morphogenesis with sexually dimorphic expression in the urogenital sinus. Endocrinology 151(7):3420–3431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37((Web Server issue)):W305-311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16):2745–2747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cinti S (1999) The adipose organ. Editrice Kurtis, Milano

    Google Scholar 

  • Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141(3):1199–1207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta S, Sengupta P (2016) Men and mice: relating their ages. Life Sci 152:244–248

    CAS  PubMed  Google Scholar 

  • Flurkey K, Currer JM, Harrison DE (2007) The mouse in aging research. In: Fox J, Barthold S, Davisson M et al (eds) The mouse in biomedical research. American College Laboratory Animal Medicine (Elsevier) Burlington, MA, pp 637–672

    Google Scholar 

  • Fuller JL (1974) Single-locus control of saccharin preference in mice. J Hered 65(1):33–36

    CAS  PubMed  Google Scholar 

  • Geraedts MC, Takahashi T, Vigues S, Markwardt ML, Nkobena A, Cockerham RE, Hajnal A, Dotson CD, Rizzo MA, Munger SD (2012) Transformation of postingestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery. Am J Physiol Endocrinol Metab 303(4):E464-474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glendinning JI, Breinager L, Kyrillou E, Lacuna K, Rocha R, Sclafani A (2010) Differential effects of sucrose and fructose on dietary obesity in four mouse strains. Physiol Behav 101(3):331–343

    CAS  PubMed  Google Scholar 

  • Grabole N, Tischler J, Hackett JA, Kim S, Tang F, Leitch HG, Magnusdottir E, Surani MA (2013) Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Rep 14(7):629–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hacia JG, Fan JB, Ryder O, Jin L, Edgemon K, Ghandour G, Mayer RA, Sun B, Hsie L, Robbins CM, Brody LC, Wang D, Lander ES, Lipshutz R, Fodor SP, Collins FS (1999) Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays. Nat Genet 22(2):164–167

    CAS  PubMed  Google Scholar 

  • Hayakawa T, Yamasita H, Iwaki T (2001) A color atlas of sectional anatomy of the mouse. Braintree Scientific Inc.

  • Inoue M, Glendinning JI, Theodorides ML, Harkness S, Li X, Bosak N, Beauchamp GK, Bachmanov AA (2007) Allelic variation of the Tas1r3 taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6-Tas1r3 congenic mice. Physiol Genom 32(1):82–94

    CAS  Google Scholar 

  • Inoue M, Reed DR, Li X, Tordoff MG, Beauchamp GK, Bachmanov AA (2004) Allelic variation of the Tas1r3 taste receptor gene selectively affects behavioral and neural taste responses to sweeteners in the F2 hybrids between C57BL/6ByJ and 129P3/J mice. J Neurosci 24(9):2296–2303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanarek RB, Orthen-Gambill N (1982) Differential effects of sucrose, fructose and glucose on carbohydrate-induced obesity in rats. J Nutr 112(8):1546–1554

    CAS  PubMed  Google Scholar 

  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361

    CAS  PubMed  Google Scholar 

  • Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M, Furlotte NA, Eskin E, Nellaker C, Whitley H, Cleak J, Janowitz D, Hernandez-Pliego P, Edwards A, Belgard TG, Oliver PL, McIntyre RE, Bhomra A, Nicod J, Gan X, Yuan W, van der Weyden L, Steward CA, Bala S, Stalker J, Mott R, Durbin R, Jackson IJ, Czechanski A, Guerra-Assuncao JA, Donahue LR, Reinholdt LG, Payseur BA, Ponting CP, Birney E, Flint J, Adams DJ (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477(7364):289–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa M, Kusakabe Y, Miura H, Ninomiya Y, Hino A (2001) Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem Biophys Res Commun 283(1):236–242

    CAS  PubMed  Google Scholar 

  • Korostynski M, Piechota M, Kaminska D, Solecki W, Przewlocki R (2007) Morphine effects on striatal transcriptome in mice. Genome Biol 8(6):R128

    PubMed  PubMed Central  Google Scholar 

  • Lewis SR, Ahmed S, Dym C, Khaimova E, Kest B, Bodnar RJ (2005) Inbred mouse strain survey of sucrose intake. Physiol Behav 85(5):546–556

    CAS  PubMed  Google Scholar 

  • Li X, Bachmanov AA, Li S, Chen Z, Tordoff MG, Beauchamp GK, de Jong PJ, Wu C, Chen L, West DB, Ross DA, Ohmen JD, Reed DR (2002) Genetic, physical, and comparative map of the subtelomeric region of mouse Chromosome 4. Mamm Genome 13(1):5–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Inoue M, Reed DR, Huque T, Puchalski RB, Tordoff MG, Ninomiya Y, Beauchamp GK, Bachmanov AA (2001) High-resolution genetic mapping of the saccharin preference locus (Sac) and the putative sweet taste receptor (T1R1) gene (Gpr70) to mouse distal Chromosome 4. Mamm Genome 12(1):13–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Inoue M, Li X, Bosak NP, Ishiwatari Y, Tordoff MG, Beauchamp GK, Bachmanov AA Reed DR (2021) Genetic of mouse behavioral and peripheral neural responses to sucrose. Mamm Genome. https://doi.org/10.1007/s00335-021-09858-4

    Article  PubMed  Google Scholar 

  • Lin C, Fesi BD, Marquis M, Bosak NP, Lysenko A, Koshnevisan MA, Duke FF, Theodorides ML, Nelson TM, McDaniel AH, Avigdor M, Arayata CJ, Shaw L, Bachmanov AA, Reed DR (2017) Adiposity QTL Adip20 decomposes into at least four loci when dissected using congenic strains. PLoS ONE 12(12):e0188972

    PubMed  PubMed Central  Google Scholar 

  • Lin C, Fesi BD, Marquis M, Bosak NP, Lysenko A, Koshnevisan MA, Duke FF, Theodorides ML, Nelson TM, McDaniel AH, Avigdor M, Arayata CJ, Shaw L, Bachmanov AA, Reed DR (2018) Burly1 is a mouse QTL for lean body mass that maps to a 0.8-Mb region of chromosome 2. Mamm Genome 29:325–343

    CAS  PubMed  Google Scholar 

  • Lin C, Fesi BD, Marquis M, Bosak NP, Theodorides ML, Avigdor M, McDaniel AH, Duke FF, Lysenko A, Khoshnevisan A, Gantick BR, Arayata CJ, Nelson TM, Bachmanov AA, Reed DR (2015) Body composition QTLs identified in intercross populations are reproducible in consomic mouse strains. PLoS ONE 10(11):e0141494

    PubMed  PubMed Central  Google Scholar 

  • Lu K, McDaniel AH, Tordoff MG, Li X, Beauchamp GK, Bachmanov AA, VanderWeele DA, Chapman CD, Dess NK, Huang L, Wang H, Reed DR (2005) No relationship between sequence variation in protein coding regions of the Tas1r3 gene and saccharin preference in rats. Chem Senses 30(3):231–240

    CAS  PubMed  Google Scholar 

  • Lush IE (1989) The genetics of tasting in mice. VI. Saccharin, acesulfame, dulcin and sucrose. Genet Res 53:95–99

    CAS  PubMed  Google Scholar 

  • Max M, Shanker YG, Huang L, Rong M, Liu Z, Campagne F, Weinstein H, Damak S, Margolskee RF (2001) Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet 28(1):58–63

    CAS  PubMed  Google Scholar 

  • McGuinness OP, Ayala JE, Laughlin MR, Wasserman DH (2009) NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. Am J Physiol Endocrinol Metab 297(4):E849-855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mi H, Muruganujan A, Thomas PD (2013) PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 41((Database issue)):D377-386

    CAS  PubMed  Google Scholar 

  • Montmayeur JP, Liberles SD, Matsunami H, Buck LB (2001) A candidate taste receptor gene near a sweet taste locus. Nat Neurosci 4(5):492–498

    CAS  PubMed  Google Scholar 

  • Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, Stahl E, Bolouri MS, Ray HN, Sihag S, Kamal M, Patterson N, Lander ES, Mann M (2003) Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115(5):629–640

    CAS  PubMed  Google Scholar 

  • Murovets VO, Bachmanov AA, Zolotarev VA (2015) Impaired glucose metabolism in mice lacking the Tas1r3 taste receptor gene. PLoS ONE 10(6):e0130997

    PubMed  PubMed Central  Google Scholar 

  • Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106(3):381–390

    CAS  PubMed  Google Scholar 

  • Olsson AH, Yang BT, Hall E, Taneera J, Salehi A, Nitert MD, Ling C (2011) Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes. Eur J Endocrinol 165(4):589–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez I (1987) When does sucrose increase appetite and adiposity? Appetite 9(1):1–19

    CAS  PubMed  Google Scholar 

  • Reed DR, Li S, Li X, Huang L, Tordoff MG, Starling-Roney R, Taniguchi K, West DB, Ohmen JD, Beauchamp GK, Bachmanov AA (2004) Polymorphisms in the taste receptor gene (Tas1r3) region are associated with saccharin preference in 30 mouse strains. J Neurosci 24(4):938–946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    CAS  PubMed  Google Scholar 

  • Sainz E, Korley JN, Battey JF, Sullivan SL (2001) Identification of a novel member of the T1R family of putative taste receptors. J Neurochem 77(3):896–903

    CAS  PubMed  Google Scholar 

  • Sclafani A (1987) Carbohydrate-induced hyperphagia and obesity in the rat: effects of saccharide type, form, and taste. Neurosci Biobehav Rev 11(2):155–162

    CAS  PubMed  Google Scholar 

  • Sclafani A, Mann S (1987) Carbohydrate taste preferences in rats: glucose, sucrose, maltose, fructose and polycose compared. Physiol Behav 40(5):563–568

    CAS  PubMed  Google Scholar 

  • Shao H, Sinasac DS, Burrage LC, Hodges CA, Supelak PJ, Palmert MR, Moreno C, Cowley AW Jr, Jacob HJ, Nadeau JH (2010) Analyzing complex traits with congenic strains. Mamm Genome 21(5–6):276–286

    PubMed  PubMed Central  Google Scholar 

  • Simon BR, Parlee SD, Learman BS, Mori H, Scheller EL, Cawthorn WP, Ning X, Gallagher K, Tyrberg B, Assadi-Porter FM, Evans CR, MacDougald OA (2013) Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors. J Biol Chem 288(45):32475–32489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JC, Wilson LS (1989) Study of a lifetime of sucrose intake by the Fischer-344 rat. Ann N Y Acad Sci 561:291–306

    CAS  PubMed  Google Scholar 

  • Smyth GK (2005) "Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer, New York, pp 397–420

    Google Scholar 

  • Soccio RE, Li Z, Chen ER, Foong YH, Benson KK, Dispirito JR, Mullican SE, Emmett MJ, Briggs ER, Peed LC, Dzeng RK, Medina CJ, Jolivert JF, Kissig M, Rajapurkar SR, Damle M, Lim H-W, Won K-J, Seale P, Steger DJ, Lazar MA (2017) Targeting PPARγ in the epigenome rescues genetic metabolic defects in mice. J Clin Invest 127(4):1451–1462

    PubMed  PubMed Central  Google Scholar 

  • Sun G, Zhu C, Kramer MH, Yang SS, Song W, Piepho HP, Yu J (2010) Variation explained in mixed-model association mapping. Heredity (Edinb) 105(4):333–340

    CAS  Google Scholar 

  • Tian L, Peng G, Parant JM, Leventaki V, Drakos E, Zhang Q, Parker-Thornburg J, Shackleford TJ, Dai H, Lin SY, Lozano G, Rassidakis GZ, Claret FX (2010) Essential roles of Jab1 in cell survival, spontaneous DNA damage and DNA repair. Oncogene 29(46):6125–6137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tordoff MG, Alarcon LK, Lawler MP (2008) Preferences of 14 rat strains for 17 taste compounds. Physiol Behav 95(3):308–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29(1):52–54

    CAS  PubMed  Google Scholar 

  • von Holstein-Rathlou S, BonDurant LD, Peltekian L, Naber MC, Yin TC, Claflin KE, Urizar AI, Madsen AN, Ratner C, Holst B, Karstoft K, Vandenbeuch A, Anderson CB, Cassell MD, Thompson AP, Solomon TP, Rahmouni K, Kinnamon SC, Pieper AA, Gillum MP, Potthoff MJ (2016) FGF21 Mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metab 23(2):335–343

    Google Scholar 

  • von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 33((Database issue)):D433-437

    Google Scholar 

  • Yalcin B, Wong K, Agam A, Goodson M, Keane TM, Gan X, Nellaker C, Goodstadt L, Nicod J, Bhomra A, Hernandez-Pliego P, Whitley H, Cleak J, Dutton R, Janowitz D, Mott R, Adams DJ, Flint J (2011) Sequence-based characterization of structural variation in the mouse genome. Nature 477(7364):326–329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, Bonhomme F, Yu AH, Nachman MW, Pialek J, Tucker P, Boursot P, McMillan L, Churchill GA, de Villena FP (2011) Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 43(7):648–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yee KK, Sukumaran SK, Kotha R, Gilbertson TA, Margolskee RF (2011) Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proc Natl Acad Sci USA 108(13):5431–5436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Erwin A, Xue B (2018) How many differentially expressed genes: a perspective from the comparison of genotypic and phenotypic distances. Genomics 110(1):67–73

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Maria L. Theodorides, Zakiyyah Smith, Mauricio Avigdor, and Amy Colihan for assistance with animal breeding. We also acknowledge Richard Copeland and Nettie Carter-Lischka for the consistent high-quality assistance of the animal care staff at the Monell Chemical Senses Center and thank them for their service. Matt Kirkey assisted with genotyping the congenic mice. Anthony Sclafani made constructive comments on an earlier draft of the manuscript.

Funding

National Institutes of Health grants R01 DC00882 (AAB and GKB), R01 AA11028 (AAB and MGT), R03 DC03854, R03 TW007429 (AAB), R03 DC03509, R01 DC04188, R01 DK55853, R01 DK094759, R01 DK058797, P30 DC011735, S10 OD018125, S10 RR025607, S10 RR026752, and G20 OD020296 (DRR) and institutional funds from the Monell Chemical Senses Center supported this work, including genotyping and the purchase of equipment. The Center for Inherited Disease Research through the auspices of the National Institutes of Health provided genotyping services.

Author information

Authors and Affiliations

Authors

Contributions

CL, AAB and DRR designed the study. CL and AAB bred and phenotyped mice. CL, XL, YI and NPB genotyped mice. MI conducted electrophysiological experiment. LC conducted analyses of metabolism and body composition. CL, AAB and DRR analyzed data. CL and DRR wrote the paper. AAB, MGT and GKB commented and edited the paper and all authors read and approved the manuscript.

Corresponding author

Correspondence to Danielle R. Reed.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflict of interest.

Ethical approval

All animal study procedures were approved by the Monell Chemical Senses Center Institutional Care and Use Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Accession IDs

MGI:3783324 (Scon3), MGI:5489743 (Scon4), MGI:6451657 (Scon10), MMRRC:036684-JAX (129P3/J-Chr 1C57BL6ByJ/MonMmjax), MMRRC:036687-JAX (129P3/J-Chr 9C57B6/ByJ/ MonMmjax), MMRRC:036690-JAX (C57BL/6ByJ-Chr 9129P3/J/ MonMmjax).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1820 kB)

Supplementary file 2 (XLSX 205 kB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Tordoff, M.G., Li, X. et al. Genetic controls of Tas1r3-independent sucrose consumption in mice. Mamm Genome 32, 70–93 (2021). https://doi.org/10.1007/s00335-021-09860-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-021-09860-w

Navigation