Skip to main content
Log in

A miR-18a binding-site polymorphism in CDC42 3′UTR affects CDC42 mRNA expression in placentas and is associated with litter size in pigs

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Increasing evidence suggests that miRNA binding-site polymorphism in the 3′-untranslated region (3′UTR) of a target gene could affect that gene’s expression, and can be associated with a variety of complex traits. In this study, we find that miR-18a and cell division cycle 42 (CDC42) mRNA, whose expression was inversely correlated, are differentially expressed in porcine placentas during critical stages of placental development. rs55618224 (T>C), a SNP in the 3′UTR region of CDC42 that is perfectly complementary to the miR-18a seed could influence miR-18a-related regulation of CDC42 gene by altering their binding affinity. In addition, CDC42 mRNA was found to have higher expression level in the homozygous TT placentas as compared to those homozygous CC placentas in pigs. Furthermore, we identified a significant association between rs55618224 and total number born per litter. These results suggest the miR-18a binding-site polymorphism in CDC42 3′UTR may impact litter size by regulation of CDC42 gene in porcine placentas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. elife 4:e05005

    Article  PubMed Central  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350

    Article  CAS  PubMed  Google Scholar 

  • An X et al (2015) Single-nucleotide polymorphisms g. 151435C> T and g. 173057T> C in PRLR gene regulated by bta-miR-302a are associated with litter size in goats. Theriogenology 83:1477–1483.e1471

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bidarimath M, Tayade C (2017) Pregnancy and spontaneous fetal loss: a pig perspective. Mol Reprod Dev 84(9):856–869

    Article  CAS  Google Scholar 

  • Brest P et al (2011) A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat Genet 43:242

    Article  CAS  PubMed  Google Scholar 

  • Chang WL et al (2018) PLAC8, a new marker for human interstitial extravillous trophoblast cells, promotes their invasion migration. Development. https://doi.org/10.1242/dev.148932

    Article  PubMed  PubMed Central  Google Scholar 

  • Clop A et al (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813

    Article  CAS  PubMed  Google Scholar 

  • Colombié N, Choesmel-Cadamuro V, Series J, Emery G, Wang X, Ramel D (2017) Non-autonomous role of Cdc42 in cell-cell communication during collective migration. Dev Biol 423:12–18

    Article  CAS  PubMed  Google Scholar 

  • Covarrubias-Pazaran G (2016) Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11:e0156744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dantzer V (1985) Electron microscopy of the initial stages of placentation in the pig. Anat Embryol (Berl) 172:281–293

    Article  CAS  Google Scholar 

  • Dehapiot B, Carrière V, Carroll J, Halet G (2013) Polarized Cdc42 activation promotes polar body protrusion and asymmetric division in mouse oocytes. Dev Biol 377:202–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629

    Article  CAS  PubMed  Google Scholar 

  • Grimson A, Farh KK-H, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez SC, Finlayson HA, Ashworth CJ, Haley CS, Archibald AL (2014) A genome-wide linkage analysis for reproductive traits in F2 Large White x Meishan cross gilts. Anim Genet 45:191–197. https://doi.org/10.1111/age.12123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong L, Hou C, Li X, Li C, Zhao S, Yu M (2014) Expression of heparanase is associated with breed-specific morphological characters of placental folded bilayer between Yorkshire and Meishan pigs. Biol Reprod 90:56. https://doi.org/10.1095/biolreprod.113.114181

    Article  CAS  PubMed  Google Scholar 

  • Hong L et al (2017) E-cadherin and ZEB2 modulate trophoblast cell differentiation during placental development in pigs. Reproduction 154:765–775. https://doi.org/10.1530/rep-17-0254

    Article  CAS  PubMed  Google Scholar 

  • Humphreys KJ, McKinnon RA, Michael MZ (2014) miR-18a inhibits CDC42 and plays a tumour suppressor role in colorectal cancer cells. PLoS ONE 9:e112288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krawczynski K, Najmula J, Bauersachs S, Kaczmarek MM (2015) MicroRNAome of porcine conceptuses and trophoblasts: expression profile of micrornas and their potential to regulate genes crucial for establishment of pregnancy. Biol Reprod 92:21. https://doi.org/10.1095/biolreprod.114.123588

    Article  CAS  PubMed  Google Scholar 

  • Lee D-G, Nam J, Kim SW, Kang Y-M, An HJ, Kim CW, Choi J-S (2015) Proteomic analysis of reproduction proteins involved in litter size from porcine placenta. Biosci Biotechnol Biochem 79:1414–1421

    Article  CAS  PubMed  Google Scholar 

  • Li H et al (2015) Integrated analysis of miRNA/mRNA network in placenta identifies key factors associated with labor onset of Large White and Qingping sows. Sci Rep 5:13074. https://doi.org/10.1038/srep13074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J et al (2017) Essential role of Cdc42 in cardiomyocyte proliferation and cell-cell adhesion during heart development. Dev Biol 421:271–283

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Li Q, Na Q, Liu C (2012) Endothelin-1 stimulates human trophoblast cell migration through Cdc 42 activation. Placenta 33:712–716

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Wang M, Su L, Li X, Zhao S, Yu M (2015) The expression pattern of MicroRNAs and the associated pathways involved in the development of porcine placental folds that contribute to the expansion of the exchange surface. Area Biol Reprod 93:62. https://doi.org/10.1095/biolreprod.114.126540

    Article  CAS  PubMed  Google Scholar 

  • Ma C et al (2016) miR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4 (RNF4 gene). Sci Rep 6:32783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier R et al (2015) Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder. Am J Hum Genet 96:283–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133:217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moszyńska A, Gebert M, Collawn JF, Bartoszewski R (2017) SNPs in microRNA target sites and their potential role in human disease. Open Biol 7:170019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicola C, Lala PK, Chakraborty C (2008) Prostaglandin E2-mediated migration of human trophoblast requires RAC1 and CDC42. Biol Reprod 78:976–982. https://doi.org/10.1095/biolreprod.107.065433

    Article  CAS  PubMed  Google Scholar 

  • Pirooz HJ et al (2017) Functional SNP in microRNA-491-5p binding site of MMP9 3′-UTR affects cancer susceptibility. J Cell Biochem 119(7):5126–5134

    Google Scholar 

  • Rempel LA, Freking BA, Miles JR, Nonneman DJ, Rohrer GA, Vallet JL, Schneider JF (2011) Association of porcine heparanase and hyaluronidase 1 and 2 with reproductive and production traits in a Landrace–Duroc–Yorkshire population. Front Genet 2:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy J, Mallick B (2017) Altered gene expression in late-onset Alzheimer’s disease due to SNPs within 3′ UTR microRNA response elements. Genomics 109:177–185

    Article  CAS  PubMed  Google Scholar 

  • Shao G, Luo L, Jiang S, Deng C, Xiong Y, Li F (2011) AC/T mutation in microRNA target sites in BMP5 gene is potentially associated with fatness in pigs. Meat Sci 87:299–303

    Article  CAS  PubMed  Google Scholar 

  • Su L, Zhao S, Zhu M, Yu M (2010) Differential expression of microRNAs in porcine placentas on days 30 and 90 of gestation. Reprod Fertil Dev 22:1175–1182. https://doi.org/10.1071/rd10046

    Article  CAS  PubMed  Google Scholar 

  • Tak YG, Farnham PJ (2015) Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenet Chromatin 8:57

    Article  CAS  Google Scholar 

  • Vallet JL, Freking BA (2007) Differences in placental structure during gestation associated with large and small pig fetuses. J Anim Sci 85:3267–3275. https://doi.org/10.2527/jas.2007-0368

    Article  CAS  PubMed  Google Scholar 

  • Vallet JL, Miles JR, Freking BA (2009) Development of the pig placenta Soc. Reprod Fertil Suppl 66:265–279

    CAS  Google Scholar 

  • Vallet JL, Miles JR, Freking BA (2010) Effect of fetal size on fetal placental hyaluronan and hyaluronoglucosaminidases throughout gestation in the pig. Anim Reprod Sci 118:297–309

    Article  CAS  PubMed  Google Scholar 

  • Vallet J, McNeel A, Johnson G, Bazer F (2013) Triennial reproduction symposium: limitations in uterine and conceptus physiology that lead to fetal losses. J Anim Sci 91:3030–3040

    Article  CAS  PubMed  Google Scholar 

  • Wang S-m, Zeng W-x, Wu W-s, Sun L-l, Yan D (2018) Association between a microRNA binding site polymorphism in SLCO1A2 and the risk of delayed methotrexate elimination in Chinese children with acute lymphoblastic leukemia. Leuk Res 65:61–66

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang Q-C, Liu J, Xiong B, Cui X-S, Kim N-H, Sun S-C (2017) The small GTPase CDC42 regulates actin dynamics during porcine oocyte maturation. J Reprod Dev 63:505–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X-m, Han T, Sargent IL, Yin G-w, Yao Y-q (2009) Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol 200:661.e661–661.e667

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Natural Science Foundation of China (31572370), Natural Science Foundation of Hubei Province (Grant# 2018CFA015), Fundamental Research Funds for the Central Universities (Program No. 2662018PY037), and HZAU pre-research project of China. The authors thank Dr. Sean Simmons from Broad institute of MIT and Harvard for helpful language modification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 90 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Deng, D., Liu, X. et al. A miR-18a binding-site polymorphism in CDC42 3′UTR affects CDC42 mRNA expression in placentas and is associated with litter size in pigs. Mamm Genome 30, 34–41 (2019). https://doi.org/10.1007/s00335-018-9788-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-018-9788-x

Keywords

Navigation