Skip to main content
Log in

DNA helix: the importance of being AT-rich

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The AT-rich DNA is mostly associated with condensed chromatin, whereas the GC-rich sequence is preferably located in the dispersed chromatin. The AT-rich genes are prone to be tissue-specific (silenced in most tissues), while the GC-rich genes tend to be housekeeping (expressed in many tissues). This paper reports another important property of DNA base composition, which can affect repertoire of genes with high AT content. The GC-rich sequence is more liable to mutation. We found that Spearman correlation between human gene GC content and mutation probability is above 0.9. The change of base composition even in synonymous sites affects mutation probability of nonsynonymous sites and thus of encoded proteins. There is a unique type of housekeeping genes, which are especially unsafe when prone to mutation. Natural selection which usually removes deleterious mutations, in the case of these genes only increases the hazard because it can descend to suborganismal (cellular) level. These are cell cycle-related genes. In accordance with the proposed concept, they have low GC content of synonymous sites (despite them being housekeeping). The gene-centred protein interaction enrichment analysis (PIEA) showed the core clusters of genes whose interactants are modularly enriched in genes with AT-rich synonymous codons. This interconnected network is involved in double-strand break repair, DNA integrity checkpoints and chromosome pairing at mitosis. The damage of these genes results in genome and chromosome instability leading to cancer and other ‘error catastrophes’. Reducing the nonsynonymous mutations, the usage of AT-rich synonymous codons can decrease probability of cancer by above 20-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aggarwala V, Voight BF (2016) An expanded sequence context model broadly explains variability in polymorphism levels across the human genome. Nat Genet 48:349–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aken BL, Achuthan P, Akanni W, Amode MR, Bernsdorff F, Bhai J, Billis K, Carvalho-Silva D, Cummins C, Clapham P et al (2017) Ensembl 2017. Nucleic Acids Res 45:D635-D642

    Article  PubMed  Google Scholar 

  • Alvarez-Valin F, Lamolle G, Bernardi G (2002) Isochores, GC3 and mutation biases in the human genome. Gene 300:161–168

    Article  CAS  PubMed  Google Scholar 

  • Anselmi C, Bocchinfuso G, De Santis P, Savino M, Scipioni A (2000) A theoretical model for the prediction of sequence-dependent nucleosome thermodynamic stability. Biophys J 79:601–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi G (2015) Chromosome architecture and genome organization. PLoS ONE 10:e0143739

    Article  PubMed  PubMed Central  Google Scholar 

  • Crow JF (1997) The high spontaneous mutation rate: is it a health risk? Proc Natl Acad Sci USA 94:8380–8386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crow JF (2000) The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet 1:40–47

    Article  CAS  PubMed  Google Scholar 

  • Danielsen HE, Pradhan M, Novelli M (2016) Revisiting tumour aneuploidy - the place of ploidy assessment in the molecular era. Nat Rev Clin Oncol 13:291–304

    Article  CAS  PubMed  Google Scholar 

  • Di Filippo M, Bernardi G (2008) Mapping DNase-I hypersensitive sites on human isochores. Gene 419:62–65

    Article  PubMed  Google Scholar 

  • Fletcher W, Yang Z (2010) The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Mol Biol Evol 27:2257–2267

    Article  CAS  PubMed  Google Scholar 

  • Gene Ontology Consortium (2017) Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res 45: D331–D338

    Article  Google Scholar 

  • Giam M, Rancati G (2015) Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div 10:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorbunova V, Seluanov A, Zhang Z, Gladyshev VN, Vijg J (2014) Comparative genetics of longevity and cancer: insights from long-lived rodents. Nat Rev Genet 15:531–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greaves M (2015) Evolutionary determinants of cancer. Cancer Discov 5:806–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabbari K, Nurnberg P (2016) A genomic view on epilepsy and autism candidate genes. Genomics 108:31–36

    Article  CAS  PubMed  Google Scholar 

  • Jia Q, Wu H, Zhou X, Gao J, Zhao W, Aziz J, Wei J, Hou L, Wu S, Zhang Y et al (2010) A “GC-rich” method for mammalian gene expression: a dominant role of non-coding DNA GC content in regulation of mammalian gene expression. Sci China Life Sci 53:94–100

    Article  CAS  PubMed  Google Scholar 

  • Jordan G, Goldman N (2012) The effects of alignment error and alignment filtering on the sitewise detection of positive selection. Mol Biol Evol 29:1125–1139

    Article  CAS  PubMed  Google Scholar 

  • Khuu P, Sandor M, DeYoung J, Ho PS (2007) Phylogenomic analysis of the emergence of GC-rich transcription elements. Proc Natl Acad Sci USA 104:16528–16533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkwood TB, Holliday R (1979) The evolution of ageing and longevity. Proc R Soc Lond B Biol Sci 205:531–546

    Article  CAS  PubMed  Google Scholar 

  • Klein CA (2013) Selection and adaptation during metastatic cancer progression. Nature 501:365–372

    Article  CAS  PubMed  Google Scholar 

  • Kokko H, Hochberg ME (2015) Towards cancer-aware life-history modelling. Philos Trans R Soc Lond B Biol Sci 370:20140234

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhou J, Wu Y, Yang S, Tian D (2015) GC-content of synonymous codons profoundly influences amino acid usage. G3 Genes Genom Genet 5:2027–2036

    Google Scholar 

  • Lim KH, Ferraris L, Filloux ME, Raphael BJ, Fairbrother WG (2011) Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc Natl Acad Sci USA 108:11093–11098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loytynoja A (2014) Phylogeny-aware alignment with PRANK. Methods Mol Biol 1079:155–170

    Article  PubMed  Google Scholar 

  • Loytynoja A, Goldman N (2008) Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320:1632–1635

    Article  PubMed  Google Scholar 

  • Mahadevappa M, Warrington JA (2002) Housekeeping genes. Encyclopedia of life sciences, Wiley, Hoboken. http://www.els.net

  • Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349:1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Minervini CF, Izumi M, Miki T (2009) Effect of culture conditions on reference genes expression in placenta-derived stem cells. Int J Stem Cells 2:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojtahedi M, Skupin A, Zhou J, Castano IG, Leong-Quong RY, Chang H, Trachana K, Giuliani A, Huang S (2016) Cell fate decision as high-dimensional critical state transition. PLoS Biol 14:e2000640

    Article  PubMed  PubMed Central  Google Scholar 

  • Nalepa G, Clapp DW (2014) Fanconi anemia and the cell cycle: new perspectives on aneuploidy. F1000Prime Rep 6:23

    Article  PubMed  PubMed Central  Google Scholar 

  • NCBI Resource Coordinators (2017) Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res 45: D12–D17

    Article  Google Scholar 

  • Palmer NP, Schmid PR, Berger B, Kohane IS (2012) A gene expression profile of stem cell pluripotentiality and differentiation is conserved across diverse solid and hematopoietic cancers. Genome Biol 13:R71

    Article  PubMed  PubMed Central  Google Scholar 

  • Rangarajan A, Hong SJ, Gifford A, Weinberg RA (2004) Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6:171–183

    Article  CAS  PubMed  Google Scholar 

  • Rich A, Zhang S (2003) Timeline: Z-DNA: the long road to biological function. Nat Rev Genet 4:566–572

    Article  CAS  PubMed  Google Scholar 

  • Saccone S, Federico C, Bernardi G (2002) Localization of the gene-richest and the gene-poorest isochores in the interphase nuclei of mammals and birds. Gene 300:169–178

    Article  CAS  PubMed  Google Scholar 

  • Slattery M, Zhou T, Yang L, Dantas Machado AC, Gordan R, Rohs R (2014) Absence of a simple code: how transcription factors read the genome. Trends Biochem Sci 39:381–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362-D368

    Article  PubMed  Google Scholar 

  • Tomasetti C, Vogelstein B (2015) Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347:78–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venn O, Turner I, Mathieson I, de Groot N, Bontrop R, McVean G (2014) Strong male bias drives germline mutation in chimpanzees. Science 344:1272–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinogradov AE (2001) Bendable genes of warm-blooded vertebrates. Mol Biol Evol 18:2195–2200

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov AE (2003a) DNA helix: the importance of being GC-rich. Nucleic Acids Res 31:1838–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinogradov AE (2003b) Isochores and tissue-specificity. Nucleic Acids Res 31:5212–5220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinogradov AE (2005) Noncoding DNA, isochores and gene expression: nucleosome formation potential. Nucleic Acids Res 33:559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinogradov AE (2015a) Consolidation of slow or fast but not moderately evolving genes at the level of pathways and processes. Gene 561:30–34

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov AE (2015b) Accelerated pathway evolution in mouse-like rodents involves cell cycle control. Mamm Genome 26:609–618

    Article  PubMed  Google Scholar 

  • Wang G, Vasquez KM (2014) Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair 19:143–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G, Christensen LA, Vasquez KM (2006) Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc Natl Acad Sci USA 103:2677–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wensink MJ (2016) Size, longevity and cancer: age structure. Proc Biol Sci 283:20161510

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav VK, DeGregori J, De S (2016) The landscape of somatic mutations in protein coding genes in apparently benign human tissues carries signatures of relaxed purifying selection. Nucleic Acids Res 44:2075–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z (2007) PAML 4: a program package for phylogenetic analysis likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for helpful comments. This work was supported by the Russian Scientific Foundation (Grant number 14-50-00068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Vinogradov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 145 KB)

Supplementary material 2 (XLS 157 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradov, A.E., Anatskaya, O.V. DNA helix: the importance of being AT-rich. Mamm Genome 28, 455–464 (2017). https://doi.org/10.1007/s00335-017-9713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-017-9713-8

Keywords

Navigation