Skip to main content

Advertisement

Log in

Late Holocene vegetation, climate, human and fire history of the forest-steppe-ecosystem inferred from core G2-A in the ‘Altai Tavan Bogd’ conservation area in Mongolia

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

The ‘Altai Tavan Bogd’ conservation area, located between 2,000 and 4,000 m a.s.l. in the north-western part of the Mongolian Altai, is a montane forest-steppe-ecosystem which has developed under extreme continental and alpine climatic conditions and is very sensitive to natural variations. Nomadic peoples have influenced the area due to grazing, logging of trees and fire for a long time. To reconstruct the dynamics of this unique forest-steppe ecosystem for the last 4,000 years under the influence of climatic changes and/or nomads, palynological and macro-charcoal analyses of the radiocarbon dated core G2-A have been performed. Between 3,880 and 2,610 cal bp the vegetation was represented by a mixture of rather open forests and non-forested high mountain steppe areas suggesting a moist and warm climate similar to the present conditions. Macro-charcoal analysis reveals three main fire events, which are probably of anthropogenic origin. In the period from 2,610 to 550 cal bp a decrease in precipitation and temperature is suggested by a higher representation of herbaceous species, retreating open forests and an increase in macro-charcoal concentration. Since 550 cal bp the forest spread out again, whereas the composition of trees differs from the period between 3,880 and 2,610 cal bp. It is characterized by the shrubs Betula rotundifolia and Juniperus indicating a more open forest, which is probably related to human activities. The advancing upper forest line and a higher plant diversity reveals that the conditions changed to a more humid climate again, lasting until present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andreev AA, Pierau R, Kalugin IA, Daryin AV, Smolyaninova LG, Diekmann B (2007) Environmental changes in the northern Altai during the last millennium documented in Lake Teletskoye pollen record. Quat Res 67:394–399

    Article  Google Scholar 

  • Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Google Scholar 

  • Chenlemuge T, Hertel D, Dulamsuren C, Khishigjargal M, Leuschner C, Hauck M (2013) Extremely low fine root biomass in Larix sibirica forests at the southern drought limit of the boreal forest. Flora 208:488–496

    Article  Google Scholar 

  • D’Arrigo R, Jacoby G, Frank D et al (2001) 1738 years of mongolian temperature variability inferred from a tree-ring width chronology of siberian pine. Geophys Res Lett 28:543–546

    Article  Google Scholar 

  • Dulamsuren C, Khishigjargal M, Leuschner C, Hauck M (2014) Response of tree-ring width to climate warming and selective logging in larch forests of the Mongolian Altai. J Plant Ecol 7:24–38

    Article  Google Scholar 

  • Earle CJ (2015) The gymnosperm database. http://www.conifers.org. Accessed 22 February

  • Ekberg I, Eriksson G (1966) Development and fertility of pollen in three species of Larix. Hereditas 57:303–311

    Article  Google Scholar 

  • El-Moslimany AP (1990) Ecological significance of common nonarboreal pollen: Examples from drylands of the Middle East. Rev Palaeobot Palynol 64:343–350

    Article  Google Scholar 

  • Fægri K, Iversen J (1989) In: Fægri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis. 4th edn. Wiley, Chichester

    Google Scholar 

  • Fernandez-Gimenez ME (1999) Sustaining the steppes: a geographical history of pastoral land use in Mongolia. Geogr Rev 89:315–342

    Article  Google Scholar 

  • Grimm E (1987) CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the methods of incremental sum of squares. Comput Geosci 13:13–15

    Article  Google Scholar 

  • Grimm E (1991) TILIA and TILIAGRAPH. Illinois State Museum, Springfield

    Google Scholar 

  • Gunin PD, Vostokova EA, Dorofeyuk NI, Tarasov PE, Black CC (1999) Vegetation dynamics of Mongolia. Kluwer, Dordrecht

    Book  Google Scholar 

  • Havinga AJ (1967) Palynology and pollen preservation. Rev Palaeobot Palynol 2:81–98

    Article  Google Scholar 

  • Herzschuh U (2006) Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quat Sci Rev 25:163–178

    Article  Google Scholar 

  • Herzschuh U (2007) Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau. J Biogeogr 34:1,265–1,273

    Article  Google Scholar 

  • Higuera PE, Brubaker LB, Anderson PM, Hu FS, Brown TA (2009) Vegetation mediated the impacts of postglacial climatic change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monogr 79:201–219

    Article  Google Scholar 

  • Higuera PE, Peters ME, Brubaker LB, Gavin DG (2007) Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quat Sci Rev 26:1,790–1,809

    Article  Google Scholar 

  • Hilbig W (1995) The vegetation of Mongolia. SPB Academic Publishing, Amsterdam

    Google Scholar 

  • Ilyashuk BP, Ilyashuk EA (2007) Chironomid record of Late Quaternary climatic and environmental changes from two sites in Central Asia (Tuva Republic, Russia)—local, regional or global causes? Quat Sci Rev 26:705–731

    Article  Google Scholar 

  • Jäger EJ (2011) Rothmaler—Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband. 20. Auflage. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Kalugin I, Selegei V, Goldberg E, Seret G (2005) Rhythmic fine-grained sediment deposition in Lake Teletskoye, Altai, Siberia, in relation to regional climate change. Quat Int 136:5–13

    Article  Google Scholar 

  • Kürschner H, Herzschuh U, Wagner D (2005) Phytosociological studies in the north-eastern Tibetian Plateau (NW China)—a first contribution to the scrub and alpine meadow vegetation. Bot Jahrb Syst Pflanzengesch Pflanzengeogr 126:273–315

    Article  Google Scholar 

  • Liu H, Cui H, Pott R, Speier M (1999) The surface pollen of the woodland-steppe ecotone in southeastern Inner Mongolia, China. Rev Palaeobot Palynol 105:237–250

    Article  Google Scholar 

  • Liu X, Herzschuh U, Shen J, Jiang Q, Xiao X (2008) Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quat Res 70:412–425

    Article  Google Scholar 

  • Lkhagvadorj D, Hauck M, Dulamsuren C, Tsogtbaatar J (2013) Pastoral nomadism in the forest-steppe of the Mongolian Altai under a changing economy and warming climate. J Arid Environ 88:82–89

    Article  Google Scholar 

  • Murad W (2011) Late Quaternary vegetation history and climate change in the Gobi Desert, South Mongolia. Dissertation, Georg-August-University Göttingen

  • Mustaphi CJ, Pisaric MFJ (2014) A classification for macroscopic charcoal morphologies found in Holocene lacustrine sediments. Prog Phys Geogr 38:734–754

    Article  Google Scholar 

  • Oksanen J (2013) Multivariate analysis of ecological communities in R: Vegan Tutorial. http://cc.oulu.fi/%7Ejarioksa/opetus/metodi/vegantutor.pdf

  • Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 year cal bp. Radiocarbon 55:1,869–1,887

    Google Scholar 

  • RStudio Team (2016) RStudio: integrated development for R. RStudio, Inc., Boston. http://www.rstudio.com/. Accessed 30 Nov 2016

  • Rudaya NA, Li HC (2013) A new approach for reconstruction of the Holocene climate in the Mongolian Altai: The high-resolution δ13C records of TOC and pollen complexes in Hoton-Nur Lake sediments. J Asian Earth Sci 69:185–195

    Article  Google Scholar 

  • Rudaya NA, Nazarova L, Novenk E et al (2016) Quantitative reconstructions of mid- to late Holocene climate and vegetation in the north-eastern Altai Mountains recorded in Lake Teletskoye. Glob Planet Chang 141:12–24

    Article  Google Scholar 

  • Rudaya NA, Tarasov PE, Dorofeyuk NI, Kalugin IA, Andreev AA, Diekmann B, Daryin AV (2008) Environmental changes in the Mongolian Altai during the Holocene. Arch Ethnol Anthropol Eurasia 36:2–14

    Article  Google Scholar 

  • Rudaya NA, Tarasov PE, Dorofeyuk NI et al (2009) Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: a step towards better understanding climate dynamics in Central Asia. Quat Sci Rev 28:540–554

    Article  Google Scholar 

  • Schlütz F, Dulamsuren C, Wieckowska M, Mühlenberg M, Hauck M (2008) Late Holocene vegetation history suggests natural origin of steppes in the northern Mongolian mountain taiga. Palaeogr Palaeoclimatol Palaeoecol 261:203–217

    Article  Google Scholar 

  • Schlütz F, Lehmkuhl F (2007) Climatic change in the Russian Altai, southern Siberia, based on palynological and geomorphological results with implications on climatic teleconnections and human history since the middle Holocene. Veget Hist Archaeobot 16:101–118

    Article  Google Scholar 

  • Schlütz F, Miehe G, Lehmkuhl F (2007) Zur Geschichte des größten alpinen Ökosystems der Erde: Palynologische Untersuchungen zu den Kobresia-Matten SE-Tibets. Ber Reinhold-Tüxen-Ges 19:23–36

    Google Scholar 

  • Schwanghart W, Frechen M, Kuhn NJ, Schüttin B (2009) Holocene environmental changes in the Ugii Nuur basin, Mongolia. Palaeogeogr Palaeoclimatol Palaeoecol 279:160–171

    Article  Google Scholar 

  • Soma T (2014) Current situation and issues of transhumant animal herding in Sagsai County, Bayan-Ulgii Province, Western Mongolia. E-J GEO 9:102–119

    Google Scholar 

  • Sommer M, Treter U (1999) Die Lärchenwälder der Gebirgswaldsteppe in den Randgebieten des Uvs Nuur-Beckens. Erde 2:173–188

    Google Scholar 

  • Stevenson J, Haberle S (2005) Macro Charcoal Analysis: a modified technique used by the Department of Archaeology and Natural History. Palaeoworks Technical Papers 5. Australian National University, Canberra

    Google Scholar 

  • Tao SC, An CB, Chen FH et al (2010) Pollen-inferred vegetation and environmental changes since 16,7 ka bp at Balikun Lake, Xinjiang. Chin Sci Bull 55:2,449–2,457

    Article  Google Scholar 

  • Tarasov P, Dorofeyuk N, Metel’tseva E (2000) Holocene vegetation and climate changes in Hoton-Nur basin, northwest Mongolia. Boreas 29:117–126

    Article  Google Scholar 

  • Tian F, Herzschuh U, Dallmeyer A, Xu Q, Mischke S, Biskaborn B (2013) Environmental variability in the monsoon-westerlies transition zone during the last 1200 years: lake sediment analyses from central Mongolia and supra-regional synthesis. Quat Sci Rev 73:31–47

    Article  Google Scholar 

  • Umbanhowar CE, McGrath MJ (1998) Experimental production and analysis of microscopic charcoal from wood, leaves and grasses. Holocene 8:341–346

    Article  Google Scholar 

  • Umbanhowar CE, Shinneman ALC, Tserenkhand G, Hammon ER, Lor P (2009) Regional fire history based on charcoal analysis of sediments from nine lakes in western Mongolia. Holocene 19:611–624

    Article  Google Scholar 

  • Van Geel B, Buurman J, Brinkkemper O, Schelvis J, Aptroot A, van Reenen G, Hakbijl T (2003) Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J Archaeol Sci 30:873–883

    Article  Google Scholar 

  • Wang W, Ma YZ, Feng ZD, Meng H, Sang Y, Zhai XW (2009) Vegetation and climate changes during the last 8660 cal. y. bp in central Mongolia, based on a high-resolution pollen record from Lake Ugii Nuur. Chin Sci Bull 54:1,579–1,589

    Google Scholar 

  • Wang W, Ma YZ, Feng ZD, Narantsetseg T, Liu KB, Zhai XW (2011) A prolonged dry mid-Holocene climate revealed by pollen and diatom records from Lake Ugii Nuur in central Mongolia. Quat Int 229:74–83

    Article  Google Scholar 

  • Wesche K, Miehe S, Miehe G (2005) Plant communities of the Gobi Gurvan Sayhan National Park (South Gobi Aymag, Mongolia). Candollea 60:149–205

    Google Scholar 

  • Zhang Q, Cheng G, Yao T, Kang X, Huang J (2003) A 2326-year tree-ring record of climate variability on the northeastern Qinghai-Tibetan Plateau. Geophys Res Lett 30:1,739–1,742

    Google Scholar 

  • Zhao Y, Liu H, Li F et al (2012) Application and limitations of the Artemisia/Chenopodiaceae pollen ratio in arid and semi-arid China. Holocene 22:1,385–1,392

    Article  Google Scholar 

Download references

Acknowledgements

This research project (AZ: BE 2116/28-1) was funded by the German Science Foundation (DFG) and carried out at Georg-August-Universität Göttingen, Germany. We are grateful to the team of G. Punsalpaamuu from the Mongolian State University of Education, Ulaanbaatar, and U. Beket from Bayan-Ulgii for their kind help in the field work. U. Nüsse-Hahne is thanked for her help in the laboratory work. Lyudmila Shumilovskikh is thanked for reading the manuscript. Additionally, we want to thank two anonymous reviewers for their helpful comments and kind advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Unkelbach.

Additional information

Communicated by Y. Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unkelbach, J., Dulamsuren, C., Punsalpaamuu, G. et al. Late Holocene vegetation, climate, human and fire history of the forest-steppe-ecosystem inferred from core G2-A in the ‘Altai Tavan Bogd’ conservation area in Mongolia. Veget Hist Archaeobot 27, 665–677 (2018). https://doi.org/10.1007/s00334-017-0664-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-017-0664-5

Keywords

Navigation