Skip to main content
Log in

Dynamics of a Stochastic SVEIR Epidemic Model Incorporating General Incidence Rate and Ornstein–Uhlenbeck Process

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, considering the inevitable effects of environmental perturbations on disease transmission, we mainly study a stochastic SVEIR epidemic model in which the transmission rate satisfies the log-normal Ornstein–Uhlenbeck process and the incidence rate is general. To analyze the dynamic properties of the stochastic model, we firstly verify that there is a unique positive global solution. By constructing several suitable Lyapunov functions and using the ergodicity of the Ornstein–Uhlenbeck process, we establish sufficient conditions for the existence of stationary distribution, which means the disease will prevail. The sufficient condition for disease extinction is also given. Next, as a special case, we investigate the asymptotic stability of equilibria for the deterministic model and establish the exact expression of the probability density function of stationary distribution for the stochastic model. Finally, we calculate the mean first passage time from the initial value to the stationary state or extinction state to study the influence of environmental perturbations; meanwhile, some numerical simulations are carried out to demonstrate theoretical conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adnani, J., Hattaf, K., Yousfi, N.: Stability analysis of a stochastic SIR epidemic model with specific nonlinear incidence rate. Int. J. Stoch. Anal. 2013, 431257 (2013)

    MathSciNet  Google Scholar 

  • Alsakaji, H.J., Rihan, F.A., Hashish, A.: Dynamics of a Stochastic epidemic model with vaccination and multiple time-delays for COVID-19 in the UAE. Complexity (2022). https://doi.org/10.1155/2022/4247800

    Article  Google Scholar 

  • Anderson, R., May, R.: Population Biology of Infectious Disease. Springer-Verlag, New York (1982)

    Book  Google Scholar 

  • Anderson, R., May, R.: Infectious Disease of Human: Dynamics and Control. Oxford University Press, Oxford (1991)

    Book  Google Scholar 

  • Andrews, J., Basu, S.: Transmission dynamics and control of cholera in Haiti: an epidemic model. Lancet 377, 1248–1255 (2011)

    Article  Google Scholar 

  • Ayoubi, T., Bao, H.: Persistence and extinction in stochastic delay logistic equation by incorporating Ornstein-Uhlenbeck process. Appl. Math. Comput. 386, 125465 (2020)

    MathSciNet  Google Scholar 

  • Cai, Y., Jiao, J., Gui, Z., Liu, Y., Wang, W.: Environmental variability in a stochastic epidemic model. Appl. Math. Comput. 329, 210–226 (2018)

    MathSciNet  Google Scholar 

  • Capasso, V., Serio, G.: A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42, 43–61 (1978)

    Article  MathSciNet  Google Scholar 

  • Chen, X., Tian, B., Xu, X., Yang, R., Zhong, S.: A stochastic SIS epidemic model with Ornstein-Uhlenbeck process and Brown motion. Res. Sq. (2021). https://doi.org/10.21203/rs.3.rs-679213/v1

    Article  Google Scholar 

  • Chong, N.S., Tchuenche, J.M., Smith, R.J.: A mathematical model of avian influenza with half-saturated incidence. Theory Biosci. 133, 23–38 (2014)

    Article  Google Scholar 

  • Demongeot, J., Griette, Q., Magal, P.: SI epidemic model applied to COVID-19 data in mainland China. R. Soc. Open Sci. 7, 201878 (2020)

    Article  Google Scholar 

  • Dieu, N.T.: Asymptotic properties of a stochastic SIR epidemic model with Beddington-DeAngelis incidence rate. J. Dyn. Diff. Equ. 30, 93–106 (2018)

    Article  MathSciNet  Google Scholar 

  • Din, A., Li, Y., Liu, Q.: Viral dynamics and control of hepatitis B virus (HBV) using an epidemic model. Alex. Eng. J. 59, 667–679 (2020)

    Article  Google Scholar 

  • Du, N.H., Nguyen, D.H., Yin, G.G.: Conditions for permanence and ergodicity of certain stochastic predator-prey models. J. Appl. Probab. 53, 187–202 (2016)

    Article  MathSciNet  Google Scholar 

  • Duan, J.: An Introduction to Stochastic Dynamics. Cambridge University Press, New York (2015)

    Google Scholar 

  • Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–46 (2001)

    Article  MathSciNet  Google Scholar 

  • Khasminskii, R.: Stochastic Stability of Differential Equations. Springer-Verlag, Berlin Heidelberg (2012)

    Book  Google Scholar 

  • Li, Y., Cui, J.: The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage. Commun. Nonlinear Sci. Numer. Simul. 14, 2353–2365 (2009)

    Article  MathSciNet  Google Scholar 

  • Li, J., Yang, Y., Zhou, Y.: Global stability of an epidemic model with latent stage and vaccination. Nonlinear Anal. Real World Appl. 12, 2163–2173 (2011)

    Article  MathSciNet  Google Scholar 

  • Liu, Z., Magal, P., Seydi, O., Webb, G.: A COVID-19 epidemic model with latency period. Infect. Dis. Model. 5, 323–337 (2020)

    Google Scholar 

  • Lv, X., Hui, H., Liu, F., Bai, Y.: Stability and optimal control strategies for a novel epidemic model of COVID-19. Nonlinear Dyn. 106, 1491–1507 (2021)

    Article  Google Scholar 

  • Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1997)

    Google Scholar 

  • May, R.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (2001)

    Book  Google Scholar 

  • Meyn, S., Tweedie, R.L.: Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25, 518–548 (1993)

    Article  MathSciNet  Google Scholar 

  • Mu, X., Jiang, D., Hayat, T., Alsaedi, A., Liao, Y.: A stochastic turbidostat model with Ornstein-Uhlenbeck process: dynamics analysis and numerical simulations. Nonlinear Dyn. 107, 2805–2817 (2022)

    Article  Google Scholar 

  • Rihan, F.A., Alsakaji, H.J.: Dynamics of a stochastic delay differential model for COVID-19 infection with asymptomatic infected and interacting people: Case study in the UAE. Results Phys. 28, 104658 (2021)

    Article  Google Scholar 

  • Shi, Z., Jiang, D.: Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein-Uhlenbeck process. Chaos Solitons Fractals 165, 112789 (2022)

    Article  MathSciNet  Google Scholar 

  • Singh, P., Gupta, A.: Generalized SIR (GSIR) epidemic model: an improved framework for the predictive monitoring of COVID-19 pandemic. ISA Trans. 124, 31–40 (2022)

    Article  Google Scholar 

  • Sun, C., Lin, Y., Tang, S.: Global stability for an special SEIR epidemic model with nonlinear incidence rates. Chaos Solitons Fractals 33, 290–297 (2007)

    Article  MathSciNet  Google Scholar 

  • Trost, D.C., Overman, E.A., Ostroff, J.H., Xiong, W., March, P.: A model for liver homeostasis using modified mean-reverting Ornstein-Uhlenbeck process. Comput. Math. Methods Med. 11, 27–47 (2010)

    Article  MathSciNet  Google Scholar 

  • Wang, X., Liu, S.: An epidemic model with different distributed latencies and nonlinear incidence rate. Appl. Math. Comput. 241, 259–266 (2014)

    MathSciNet  Google Scholar 

  • Wang, W., Cai, Y., Ding, Z., Gui, Z.: A stochastic differential equation SIS epidemic model incorporating Ornstein-Uhlenbeck process. Phys. A 509, 921–936 (2018)

    Article  MathSciNet  Google Scholar 

  • Yang, Q., Zhang, X., Jiang, D.: Asymptotic behavior of a stochastic SIR model with general incidence rate and nonlinear L\(\acute{e}\)vy jumps. Nonlinear Dyn. 107, 2975–2993 (2022)

    Article  Google Scholar 

  • Yang, Q., Zhang, Z., Jiang, D.: Dynamical behaviors of a stochastic food chain system with Ornstein-Uhlenbeck process. J. Nonlinear Sci. 32, 1–40 (2022)

    Article  MathSciNet  Google Scholar 

  • Yang, A., Wang, H., Zhang, T., Yuan, S.: Stochastic switches of eutrophication and oligotrophication: Modeling extreme weather via non-Gaussian L\(\acute{e}\)vy noise. Chaos Interdiscip. J. Nonlinear Sci. 32, 043116 (2022)

    Article  Google Scholar 

  • Yun, S., Zhang, X.: Stationary distribution and extinction of a stochastic SVEIS epidemic model incorporating Ornstein-Uhlenbeck process. Appl. Math. Lett. 133, 108284 (2022)

    Article  MathSciNet  Google Scholar 

  • Zhang, X., Yuan, R.: A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function. Appl. Math. Comput. 394, 125833 (2021)

    MathSciNet  Google Scholar 

  • Zhao, D., Zhang, T., Yuan, S.: The threshold of a stochastic SIVS epidemic model with nonlinear saturated incidence. Phys. A 443, 372–379 (2016)

    Article  MathSciNet  Google Scholar 

  • Zhou, Y., Xiao, D., Li, Y.: Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action. Chaos Solitons Fractals 32, 1903–1915 (2007)

    Article  MathSciNet  Google Scholar 

  • Zhou, B., Zhang, X., Jiang, D.: Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate. Chaos Solitons Fractals 137, 109865 (2020)

    Article  MathSciNet  Google Scholar 

  • Zhou, B., Jiang, D., Han, B., Hayat, T.: Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein-Uhlenbeck process. Math. Comput. Simul. 196, 15–44 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XZ, DJ and TS wrote the main manuscript text, and TS prepared Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xinhong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest and the data are available.

Additional information

Communicated by Anthony Bloch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

We give the specific calculation process of

$$\begin{aligned} \lim _{t\rightarrow \infty }\left( \frac{1}{t}\int _{0}^{t}(\beta (\tau )-{\bar{\beta }})^2\textrm{d}\tau \right) ^{\frac{1}{2}}. \end{aligned}$$

A necessary integral should be first illustrated.

Lemma A

\(\int _{-\infty }^{+\infty }e^{-At^{2}}\textrm{d}t=\frac{\sqrt{\pi }}{\sqrt{A}}.\)

Proof

Let \(y=\sqrt{A}t\), then we obtain

$$\begin{aligned} \int _{-\infty }^{+\infty }e^{-At^{2}}\textrm{d}t=\frac{1}{\sqrt{A}}\int _{-\infty }^{+\infty }e^{-y^{2}}\textrm{d}y. \end{aligned}$$

Denote \(\Gamma (x)\) as the Gamma function, then we know \(\Gamma (\frac{1}{2})=\sqrt{\pi }\). Let \(x=y^2\), then we have

$$\begin{aligned} \int _{-\infty }^{+\infty }e^{-y^{2}}\textrm{d}y&=2 \int _{0}^{+\infty }e^{-y^{2}}\textrm{d}y =\int _{0}^{+\infty }\frac{1}{\sqrt{x}}e^{-x}\textrm{d}x =\Gamma (\frac{1}{2}) =\sqrt{\pi }. \end{aligned}$$

Therefore, we get

$$\begin{aligned} \int _{-\infty }^{+\infty }e^{-At^{2}}\textrm{d}t=\frac{\sqrt{\pi }}{\sqrt{A}}. \end{aligned}$$

\(\square \)

Next, we calculate \(\lim _{t\rightarrow \infty }\left( \frac{1}{t}\int _{0}^{t}(\beta (\tau )-{\bar{\beta }})^2\textrm{d}\tau \right) ^{\frac{1}{2}}\). To make the calculation clear, let \(y(t)=\log \beta (t)\) and \({\bar{y}}=\log {\bar{\beta }}\). According to the analysis in Sect. 2, y(t) obeys the Gaussian distribution \({\mathcal {N}}({\bar{y}},\frac{\lambda ^{2}}{2\gamma })\) as \(t\rightarrow +\infty \) with the probability density function

$$\begin{aligned} \zeta (y)=\frac{\sqrt{\gamma }}{\sqrt{\pi }\lambda }e^{-\gamma \left( \frac{y -{\bar{y}}}{\lambda }\right) ^{2}}. \end{aligned}$$

From the ergodicity of \(\beta (t)\), we have

$$\begin{aligned} \begin{aligned} \lim _{t\rightarrow \infty }\frac{1}{t}\int _{0}^{t}(\beta (\tau )-{\bar{\beta }})^2\textrm{d}\tau&=\int _{-\infty }^{+\infty }\left( e^y-e^{{\bar{y}}}\right) ^2\zeta (y)\textrm{d}y\\&=\int _{-\infty }^{+\infty }\left( e^y-e^{{\bar{y}}}\right) ^2\frac{\sqrt{\gamma }}{\sqrt{\pi }\lambda }e^{-\gamma \left( \frac{y -{\bar{y}}}{\lambda }\right) ^{2}}\textrm{d}y\\&={\bar{\beta }}^2\frac{\sqrt{\gamma }}{\sqrt{\pi }\lambda }\int _{-\infty }^{+\infty }\left( e^{y-{\bar{y}}}-1\right) ^2e^{-\gamma \left( \frac{y -{\bar{y}}}{\lambda }\right) ^{2}}\textrm{d}y \end{aligned} \end{aligned}$$
(48)

Let \(x=y-{\bar{y}}\), then (48) turns into

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{1}{t}\int _{0}^{t}(\beta (\tau )-{\bar{\beta }})^2\textrm{d}\tau ={\bar{\beta }}^2\frac{\sqrt{\gamma }}{\sqrt{\pi }\lambda }\int _{-\infty }^{+\infty }\left( e^{x}-1\right) ^2e^{-\gamma \frac{x^2}{\lambda ^2}}\textrm{d}x. \end{aligned}$$
(49)

Let \(t=\frac{x}{\lambda }\), then (49) transforms into

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{1}{t}\int _{0}^{t}(\beta (\tau )-{\bar{\beta }})^2\textrm{d}\tau&={\bar{\beta }}^2\frac{\sqrt{\gamma }}{\sqrt{\pi }}\int _{-\infty }^{+\infty }\left( e^{\lambda t}-1\right) ^2e^{-\gamma t^2}\textrm{d}t\\&={\bar{\beta }}^2\frac{\sqrt{\gamma }}{\sqrt{\pi }}\int _{-\infty }^{+\infty }\left( e^{2\lambda t-\gamma t^2}-2e^{\lambda t-\gamma t^2}+e^{-\gamma t^2}\right) \textrm{d}t\\&:={\bar{\beta }}^2\frac{\sqrt{\gamma }}{\sqrt{\pi }}\left( I_{1}-2I_{2}+I_{3}\right) . \end{aligned}$$

By Lemma A, we calculate \(I_{1}\), \(I_{2}\) and \(I_{3}\), respectively.

$$\begin{aligned} I_{1}&=\int _{-\infty }^{+\infty }e^{2\lambda t-\gamma t^2}\textrm{d}t=\int _{-\infty }^{+\infty }e^{-\gamma (t-\frac{\lambda }{\gamma })^2+\frac{\lambda ^2}{\gamma }}\textrm{d}t\\&=e^{\frac{\lambda ^2}{\gamma }}\int _{-\infty }^{+\infty }e^{-\gamma (t-\frac{\lambda }{\gamma })^2}\textrm{d}t=e^{\frac{\lambda ^2}{\gamma }}\frac{\sqrt{\pi }}{\sqrt{\gamma }}.\\ I_{2}&=\int _{-\infty }^{+\infty }e^{\lambda t-\gamma t^2}\textrm{d}t =\int _{-\infty }^{+\infty }e^{-\gamma (t-\frac{\lambda }{2\gamma })^2+\frac{\lambda ^2}{4\gamma }}\textrm{d}t \\&=e^{\frac{\lambda ^2}{4\gamma }}\int _{-\infty }^{+\infty }e^{-\gamma (t-\frac{\lambda }{2\gamma })^2}\textrm{d}t=e^{\frac{\lambda ^2}{4\gamma }}\frac{\sqrt{\pi }}{\sqrt{\gamma }}.\\ I_{3}&=\int _{-\infty }^{+\infty }e^{-\gamma t^2}\textrm{d}t=\frac{\sqrt{\pi }}{\sqrt{\gamma }}. \end{aligned}$$

Finally, we have

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{1}{t}\int _{0}^{t}(\beta (\tau )-{\bar{\beta }})^2\textrm{d}\tau ={\bar{\beta }}^2\left( e^{\frac{\lambda ^2}{\gamma }}+2e^{\frac{\lambda ^2}{4\gamma }}+1\right) . \end{aligned}$$

Hence,

$$\begin{aligned} \lim _{t\rightarrow \infty }\left( \frac{1}{t}\int _{0}^{t}(\beta (\tau )-{\bar{\beta }})^2\textrm{d}\tau \right) ^{\frac{1}{2}}={\bar{\beta }}\left( e^{\frac{\lambda ^2}{\gamma }}+2e^{\frac{\lambda ^2}{4\gamma }}+1\right) ^{\frac{1}{2}}. \end{aligned}$$

Appendix B

We verify the local asymptotic stability of equilibria in the deterministic system (41).

Theorem B

Assuming that \({\hat{R}}_{0}<1\), then disease-free equilibrium \(P_0\) is locally asymptotically stable (LAS). Furthermore, if \({\hat{R}}_{0}>1\), then the endemic equilibrium \( {\hat{P}}^{*}\) is LAS, but \(P_0\) is unstable.

Proof

The Jacobian matrix of system (41) is

$$\begin{aligned} J=\left( \begin{array}{cccc} -({\bar{\beta }}I+\mu +\rho )&{}\omega &{}0&{}-{\bar{\beta }}S\\ \rho &{}-({\bar{\beta }}I+\mu +\omega )&{}0&{}-{\bar{\beta }}V\\ {\bar{\beta }}I&{}{\bar{\beta }}I&{}-(\mu +\theta )&{}{\bar{\beta }}(S+V)\\ 0&{}0&{}\theta &{}-(\mu +\alpha ) \end{array}\right) . \end{aligned}$$

Evaluating the matrix J at \(P_0\) leads us to

$$\begin{aligned} J_{0}=\left( \begin{array}{cccc} -(\mu +\rho )&{}\omega &{}0&{}-{\bar{\beta }}S_{0}\\ \rho &{}-(\mu +\omega )&{}0&{}-{\bar{\beta }}V_{0}\\ 0&{}0&{}-(\mu +\theta )&{}{\bar{\beta }}(S_{0}+V_{0})\\ 0&{}0&{}\theta &{}-(\mu +\alpha ) \end{array}\right) . \end{aligned}$$

The eigenvalues of \(|\lambda {\mathbb {I}}_{4}-J_{0}|\) are determined by the following equation

$$\begin{aligned}&\left[ \lambda ^{2}+\left( 2\mu +\omega +\rho \right) \lambda +\mu (\mu +\omega +\rho )\right] \\&\quad \left[ \lambda ^{2}+(2\mu +\alpha +\theta )\lambda +(\mu +\theta )(\mu +\alpha )-\theta {\bar{\beta }}(S_{0}+V_{0})\right] =0. \end{aligned}$$

Apparently,

$$\begin{aligned} 2\mu +\omega +\rho>0,\ \mu (\mu +\omega +\rho )>0,\ 2\mu +\alpha +\theta >0. \end{aligned}$$

It is easy to check that \( (\mu +\theta )(\mu +\alpha )-\theta {\bar{\beta }}(S_{0}+V_{0})>0\) when \({\hat{R}}_0<1\). By definition 2.1 in Yang et al. (2022), all eigenvalues of \(J_{0}\) have the negative real part. Hence, \(P_0\) is locally asymptotically stable if \({\hat{R}}_{0}<1\).

Next, we concentrate on the LAS of endemic equilibrium \( {\hat{P}}^{*}=({\hat{S}}^{*},{\hat{V}}^{*},{\hat{E}}^{*},{\hat{I}}^{*})\). Taking \({\hat{P}}^*\) into the matrix J reads

$$\begin{aligned} J_*=\left( \begin{array}{cccc} -({\bar{\beta }}{\hat{I}}^*+\mu +\rho )&{}\omega &{}0&{}-{\bar{\beta }}{\hat{S}}^*\\ \rho &{}-({\bar{\beta }}{\hat{I}}^*+\mu +\omega )&{}0&{}-{\bar{\beta }}{\hat{V}}^*\\ {\bar{\beta }}{\hat{I}}^*&{}{\bar{\beta }}{\hat{I}}^*&{}-(\mu +\theta )&{}{\bar{\beta }}({\hat{S}}^*+{\hat{V}}^*)\\ 0&{}0&{}\theta &{}-(\mu +\alpha ) \end{array}\right) . \end{aligned}$$

From the third and fourth equations of (41), we have

$$\begin{aligned} {\bar{\beta }}({\hat{S}}^{*}+{\hat{V}}^{*}) =\frac{(\mu +\theta ){\hat{E}}^{*}}{{\hat{I}}^{*}}=\frac{(\mu +\theta )(\mu +\alpha )}{\theta }, \end{aligned}$$

which means

$$\begin{aligned} \theta {\bar{\beta }}({\hat{S}}^{*}+{\hat{V}}^{*})=(\mu +\theta )(\mu +\alpha ). \end{aligned}$$
(50)

Combining (50), the characteristic equation of \(J_*\) is calculated as

$$\begin{aligned} \lambda ^{4}+a_{1}\lambda ^{3}+a_{2}\lambda ^{2}+a_{3}\lambda +a_{4}=0, \end{aligned}$$
(51)

in which

$$\begin{aligned} a_{1}=&2{\bar{\beta }}{\hat{I}}^{*}+4\mu +\omega +\rho +\theta +\alpha ,\\ a_{2}=&({\bar{\beta }}{\hat{I}}^{*}+\mu )({\bar{\beta }}{\hat{I}}^{*} +\mu +\omega +\rho )+(2\mu +\theta +\alpha )(2{\bar{\beta }}{\hat{I}}^{*}+2\mu +\omega +\rho ),\\ a_{3}=&\theta {\bar{\beta }}^{2}{\hat{I}}^{*}({\hat{S}}^{*}+{\hat{V}}^{*}) +(2\mu +\theta +\alpha )({\bar{\beta }}{\hat{I}}^{*}+\mu )({\bar{\beta }}{\hat{I}}^{*}+\mu +\omega +\rho ),\\ a_{4}=&\theta {\bar{\beta }}^{2}{\hat{I}}^{*}({\hat{S}}^{*}+{\hat{V}}^{*}) ({\bar{\beta }}{\hat{I}}^{*}+\mu +\omega +\rho ). \end{aligned}$$

It is obvious that \(a_{1}>0,\ a_{2}>0,\ a_{3}>0,\ a_{4}>0\). To make the calculation briefer, define \(b_{1}={\bar{\beta }}{\hat{I}}^{*}+\mu>0,\ b_{2}={\bar{\beta }}{\hat{I}}^{*}+\mu +\omega +\rho>0,\ b_{3}=2\mu +\theta +\alpha>0,\ b_{4}=\theta {\bar{\beta }}^{2}{\hat{I}}^{*}({\hat{S}}^{*}+{\hat{V}}^{*})={\bar{\beta }}{\hat{I}}^{*}(\mu +\theta )(\mu +\alpha )>0,\) then \(a_1,\ a_2,\ a_3,\ a_4\) can be equivalently expressed as

$$\begin{aligned} a_{1}=b_{1}+b_{2}+b_{3},\ a_{2}=b_{1}b_{2}+b_{1}b_{3}+b_{2}b_{3},\ a_{3}=b_{4}+b_{1}b_{2}b_{3},\ a_{4}=b_{2}b_{4}. \end{aligned}$$

From

$$\begin{aligned} b_{1}b_{3}^{2}-b_{4}&=({\bar{\beta }}I^{*}+\mu )(2\mu +\theta +\alpha )^2-{\bar{\beta }}I^{*}(\mu +\theta )(\mu +\alpha )\\&={\bar{\beta }}I^{*}\left[ (\mu +\theta )^2+(\mu +\alpha )^2+(\mu +\theta )(\mu +\alpha )\right] \\&\quad +\mu (2\mu +\theta +\alpha )^2>0,\\ b_{2}b_{3}^{2}-b_{4}&=({\bar{\beta }}I^{*}+\mu +\omega +\rho )(2\mu +\theta +\alpha )^2-{\bar{\beta }}I^{*}(\mu +\theta )(\mu +\alpha )\\&={\bar{\beta }}I^{*}\left[ (\mu +\theta )^2+(\mu +\alpha )^2+(\mu +\theta )(\mu +\alpha )\right] \\&\quad +(\mu +\omega +\rho )(2\mu +\theta +\alpha )^2 >0, \end{aligned}$$

we obtain

$$\begin{aligned} a_{1}a_{2}-a_{3}&=(b_{1}+b_{2}+b_{3})(b_{1}b_{2}+b_{1}b_{3}+b_{2}b_{3})-(b_{4} +b_{1}b_{2}b_{3})\\&=b_{1}^{2}(b_{2}+b_{3})+b_{2}(b_{1}b_{2}+b_{1}b_{3} +b_{2}b_{3})\\&\quad +b_{1}b_{3}(b_{2}+b_{3})+b_{2}b_{3}^{2}-b_{4}>0, a_{1}(a_{2}a_{3}-a_{1}a_{4})-a_{3}^{2}\\&=(b_{1}b_{2})^{2}(b_{1}b_{3}+b_{2}b_{3}+b_{3}^{2}) +b_{1}^{2}b_{3}(b_{4}+b_{1}b_{2}b_{3})\\&\quad +(b_{1}b_{2}^{2}+b_{2}^{2}b_{3}+b_{2}^{3}+b_{1}b_{2}b_{3}+b_{4})(b_{1}b_{3}^{2}-b_{4}) >0. \end{aligned}$$

Therefore, all roots of (51) have the negative real part. We get the result that \({\hat{P}}^*\) is LAS when \({\hat{R}}_{0}>1\). The proof ends. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Su, T. & Jiang, D. Dynamics of a Stochastic SVEIR Epidemic Model Incorporating General Incidence Rate and Ornstein–Uhlenbeck Process. J Nonlinear Sci 33, 76 (2023). https://doi.org/10.1007/s00332-023-09935-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09935-9

Keywords

Mathematics Subject Classification

Navigation