Skip to main content
Log in

A Mathematical Framework for Dynamical Social Interactions with Dissimulation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Modeling social interactions is a challenging task that requires flexible frameworks. For instance, dissimulation and externalities are relevant features influencing such systems—elements that are often neglected in popular models. This paper is devoted to investigating general mathematical frameworks for understanding social situations where agents dissimulate and may be sensitive to exogenous objective information. Our model comprises a population where the participants can be honest, persuasive, or conforming. Firstly, we consider a non-cooperative setting, where we establish existence, uniqueness and some properties of the Nash equilibria of the game. Secondly, we analyze a cooperative setting, identifying optimal strategies within the Pareto front. In both cases, we develop numerical algorithms allowing us to computationally assess the behavior of our models under various settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All datasets generated in this study can be recovered from information available within the article.

Notes

  1. More precisely, the quotation we refer to is:

    “The checkerboard model in its present form is more of a basic conceptual framework than a model of any given social situation. It has potentiality for further elaboration to fit particular situations. As it now stands, it can be used as a visual representation of the social interaction process, relating attitudes, social interaction and social structure. It should be particularly useful in introductory courses, not only illustrating the relationship among these concepts, but also in discussing the function of models. A model is not necessarily used to predict behavior in a situation. Model building is useful in clarifying the definition of concepts and the relationship among them. Left in verbal form, concepts can be elusive in meaning, whereas computerization require precision in definition of terms. Models can be used to gain insight into basic principles of behavior rather than in finding precise predictions of results for a given social situation, and it is this function which the checkerboard model in its present form provides (...). The checkerboard model provides students of social structure with a possible explanation of its dynamics.”

  2. According to Western metaphysical tradition, “Veritas est adaequatio rei et intellectus”, see St. Thomas Aquinas’ De Veritate, Q.1, A.1-4.

  3. E.g., when a vaccine for a given disease is proven effective, can we observe an anti-vaccine consensus?

  4. This asymmetric interval for the parameters \(\delta _i\) results from our particular parameterization of the model.

  5. For the definition of \(P_{{\mathcal {A}}_i},\) see Remark 1.

  6. https://www.politicalcompass.org/uselection2020.

  7. His actual words were (see Pareto 1896, page 18): “Nous étudierons spécialement l’équilibre économique. Un système économique sera dit en équilibre si le changement d’une des conditions de ce système entraîne d’autres changements qui produiraient une action exactement opposée.”

  8. For the definition of \(P_{{\mathcal {A}}_i},\) see Remark 1.

References

  • Arieli, I., Mueller-Frank, M.: Multidimensional social learning. Rev. Econ. Stud. 86(3), 913–940 (2019)

    MathSciNet  MATH  Google Scholar 

  • Asch, S.E.: Opinions and social pressure. Sci. Am. 193(5), 31–35 (1955)

    Google Scholar 

  • Bailo, R., Carrillo, J.A., Degond, P.: Pedestrian models based on rational behaviour. In: Gibelli, L., Bellomo, N. (eds) Crowd Dynamics, Vol. 1. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham (2018). https://doi.org/10.1007/978-3-030-05129-7_9

  • Bala, V., Goyal, S.: Conformism and diversity under social learning. Econ. Theor. 17(1), 101–120 (2001)

    MathSciNet  MATH  Google Scholar 

  • Banerjee, A., Breza, E., Chandrasekhar, A.G., Mobius, M.: Naive learning with uninformed agents. Technical report, National Bureau of Economic Research (2019)

  • Başar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. SIAM, London (1998)

    MATH  Google Scholar 

  • Basar, T., Zaccour, G.: Handbook of Dynamic Game Theory. Springer, Berlin (2018)

    Google Scholar 

  • Bauso, D., Tembine, H., Basar, T.: Opinion dynamics in social networks through mean-field games. SIAM J. Control. Optim. 54(6), 3225–3257 (2016)

    MathSciNet  MATH  Google Scholar 

  • Blondel, V.D., Hendrickx, J.M., Tsitsiklis, J.N.: Continuous-time average-preserving opinion dynamics with opinion-dependent communications. SIAM J. Control Optim. 48(8), 5214–5240 (2010)

    MathSciNet  MATH  Google Scholar 

  • Blume, L.E., Brock, W.A., Durlauf, S.N., Jayaraman, R.: Linear social interactions models. J. Polit. Econ. 123(2), 444–496 (2015)

    Google Scholar 

  • Borzi, A., Wongkaew, S.: Modeling and control through leadership of a refined flocking system. Math. Models Methods Appl. Sci. 25(02), 255–282 (2015)

    MathSciNet  MATH  Google Scholar 

  • Bryson, A.E., Ho, Y.-C.: Applied Optimal Control: Optimization, Estimation, and Control. Routledge, London (1975)

    Google Scholar 

  • Buechel, B., Hellmann, T., Klößner, S.: Opinion dynamics and wisdom under conformity. J. Econ. Dyn. Control 52, 240–257 (2015)

    MathSciNet  MATH  Google Scholar 

  • Caillaud, B., Tirole, J.: Consensus building: How to persuade a group. Am. Econ. Rev. 97(5), 1877–1900 (2007)

    Google Scholar 

  • Calvo-Armengol, A., Jackson, M.O.: The effects of social networks on employment and inequality. Am. Econ. Rev. 94(3), 426–454 (2004)

    Google Scholar 

  • Canuto, C., Fagnani, F., Tilli, P.: A Eulerian approach to the analysis of rendez-vous algorithms. IFAC Proc. Vol. 41(2), 9039–9044 (2008)

    Google Scholar 

  • Che, Y.-K., Kartik, N.: Opinions as incentives. J. Polit. Econ. 117(5), 815–860 (2009)

    Google Scholar 

  • Ciarlet, P.G., Miara, B., Thomas, J.-M.: Introduction to Numerical Linear Algebra and Optimisation. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  • Degond, P., Liu, J.-G., Merino-Aceituno, S., Tardiveau, T.: Continuum dynamics of the intention field under weakly cohesive social interaction. Math. Models Methods Appl. Sci. 27(01), 159–182 (2017)

    MathSciNet  MATH  Google Scholar 

  • DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)

    MATH  Google Scholar 

  • DeMarzo, P.M., Vayanos, D., Zwiebel, J.: Persuasion bias, social influence, and unidimensional opinions. Q. J. Econ. 118(3), 909–968 (2003)

    MATH  Google Scholar 

  • Dietrich, F., Martin, S., Jungers, M.: Control via leadership of opinion dynamics with state and time-dependent interactions. IEEE Trans. Autom. Control 63(4), 1200–1207 (2017)

    MathSciNet  MATH  Google Scholar 

  • Douven, I., Hegselmann, R.: Mis- and disinformation in a bounded confidence model. Artif. Intell. 96, 103415 (2020)

    MathSciNet  MATH  Google Scholar 

  • Ellison, G., Fudenberg, D.: Rules of thumb for social learning. J. Polit. Econ. 101(4), 612–643 (1993)

    Google Scholar 

  • Ellison, G., Fudenberg, D.: Word-of-mouth communication and social learning. Q. J. Econ. 110(1), 93–125 (1995)

    MATH  Google Scholar 

  • Etesami, S.R., Bolouki, S., Nedić, A., Başar, T., Poor, V.H.: Influence of conformist and manipulative behaviors on public opinion. IEEE Trans. Control Netw. Syst. 6(1), 202–214 (2018)

    MATH  Google Scholar 

  • Festinger, L.: A Theory of Cognitive Dissonance, vol. 2. Stanford University Press, Redwood City (1957)

    Google Scholar 

  • French, J.R.P., Jr.: A formal theory of social power. Psychol. Rev. 63(3), 181 (1956)

    Google Scholar 

  • Golub, B., Jackson, M.O.: Naive learning in social networks and the wisdom of crowds. Am. Econ. J. Microecon. 2(1), 112–49 (2010)

    Google Scholar 

  • Gomes, A., Jehiel, P.: Dynamic processes of social and economic interactions: on the persistence of inefficiencies. J. Polit. Econ. 113(3), 626–667 (2005)

    Google Scholar 

  • Han, W., Huang, C., Yang, J.: Opinion clusters in a modified Hegselmann–Krause model with heterogeneous bounded confidences and stubbornness. Phys. A 531, 121791 (2019)

    Google Scholar 

  • Harary, F.: Status and contrastatus. Sociometry 22(1), 23–43 (1959)

    MathSciNet  Google Scholar 

  • Hegselmann, R.: Thomas C. Schelling and James M. Sakoda: The intellectual, technical, and social history of a model. J. Artif. Soc. Soc. Simul. 20(3), 96 (2017)

    Google Scholar 

  • Hegselmann, R., Krause, U.: Deliberative exchange, truth, and cognitive division of labour: a low-resolution modeling approach. Episteme 6(2), 130–144 (2009)

    Google Scholar 

  • Hegselmann, R., Krause, U.: Opinion dynamics under the influence of radical groups, charismatic leaders, and other constant signals: a simple unifying model. Netw. Heterog. Media 10(3), 477 (2015)

    MathSciNet  MATH  Google Scholar 

  • Hegselmann, R., Krause, U., et al.: Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 5(3), 96 (2002)

    Google Scholar 

  • Hegselmann, R., Krause, U., et al.: Truth and cognitive division of labor: first steps towards a computer aided social epistemology. J. Artif. Soc. Soc. Simul. 9(3), 10 (2006)

    Google Scholar 

  • Jabin, P.-E., Motsch, S.: Clustering and asymptotic behavior in opinion formation. J. Differ. Equ. 257(11), 4165–4187 (2014)

    MathSciNet  MATH  Google Scholar 

  • Kirchkamp, O., Nagel, R.: Naive learning and cooperation in network experiments. Games Econ. Behav. 58(2), 269–292 (2007)

    MathSciNet  MATH  Google Scholar 

  • Leitmann, G.: Cooperative and Non-cooperative Many Players Differential Games. Springer, Berlin (1974)

    MATH  Google Scholar 

  • Mossel, E., Mueller-Frank, M., Sly, A., Tamuz, O.: Social learning equilibria. Econometrica 88(3), 1235–1267 (2020)

    MathSciNet  MATH  Google Scholar 

  • Mueller-Frank, M.: Does one Bayesian make a difference? J. Econ. Theory 154, 423–452 (2014)

    MathSciNet  MATH  Google Scholar 

  • Nickerson, R.S.: Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2(2), 175–220 (1998)

    Google Scholar 

  • Pareto, V.: Cours d’économie politique. Tome. Premier. F. Rouge, Lausanne (1896)

    Google Scholar 

  • Rosenberg, D., Solan, E., Vieille, N.: Informational externalities and emergence of consensus. Games Econom. Behav. 66(2), 979–994 (2009)

    MathSciNet  MATH  Google Scholar 

  • Rusinowska, A., Taalaibekova, A.: Opinion formation and targeting when persuaders have extreme and centrist opinions. J. Math. Econ. 84, 9–27 (2019)

    MathSciNet  MATH  Google Scholar 

  • Teschl, G.: Ordinary Differential Equations and Dynamical Systems, vol. 140. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  • Wongkaew, S., Caponigro, M., Borzi, A.: On the control through leadership of the Hegselmann–Krause opinion formation model. Math. Models Methods Appl. Sci. 25(03), 565–585 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

YS, MOS and YT were financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance code 001. MOS was also partially financed by CNPq (Grant # 310293/2018-9) and by FAPERJ (Grant # E-26/210.440/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Souza.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Communicated by Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saporito, Y.F., Souza, M.O. & Thamsten, Y. A Mathematical Framework for Dynamical Social Interactions with Dissimulation. J Nonlinear Sci 33, 18 (2023). https://doi.org/10.1007/s00332-022-09867-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09867-w

Keywords

Mathematics Subject Classification

Navigation