Skip to main content
Log in

Weak Solutions to the Stationary Cahn–Hilliard/Navier–Stokes Equations for Compressible Fluids

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We are concerned with the Cahn–Hilliard/Navier–Stokes equations for the stationary compressible flows in a three-dimensional bounded domain. The governing equations consist of the stationary Navier–Stokes equations describing the compressible fluid flows and the stationary Cahn–Hilliard-type diffuse equation for the mass concentration difference. We prove the existence of weak solutions when the adiabatic exponent \(\gamma \) satisfies \(\gamma >\frac{4}{3}\). The proof is based on the weighted total energy estimates and the new techniques developed to overcome the difficulties from the capillary stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abels, H., Feireisl, E.: On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57(2), 659–698 (2008)

    Article  MathSciNet  Google Scholar 

  • Adams, R.: Sobolev spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  • Anderson D., McFadden G., Wheeler A.: Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, Annual Reviews, Palo Alto, CA, (1998) 139-165

  • Antanovskii, L.: A phase field model of capillarity. Phys. Fluids A 7, 747–753 (1995)

    Article  MathSciNet  Google Scholar 

  • Biswas, T., Dharmatti, S., Mahendranath, P., Mohan, M.: On the stationary nonlocal Cahn-Chilliard-Navier-Stokes system: existence, uniqueness and exponential stability. Asymptot. Anal. 125(1–2), 59–99 (2021)

    MathSciNet  MATH  Google Scholar 

  • Biswas, T., Dharmatti, S., Mohan, M.: Second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn-Hillard-Navier-Stokes equations. Nonlinear Stud. 28(1), 29–43 (2021)

    MathSciNet  MATH  Google Scholar 

  • Bresch, D., Burtea, C.: Weak solutions for the stationary anisotropic and nonlocal compressible Navier-Stokes system. J. Math. Pures Appl. 146(9), 183–217 (2021)

    Article  MathSciNet  Google Scholar 

  • Cahn, J., Hilliard, J.: Free energy of non-uniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  • Chen, S., Ji, S., Wen, H., Zhu, C.: Existence of weak solutions to steady Navier-Stokes/Allen-Cahn system. J. Differ. Equ. 269(10), 8331–8349 (2020)

    Article  MathSciNet  Google Scholar 

  • Feireisl E.: Dynamics of viscous compressible fluids, Oxford University Press (2004)

  • Frehse, J., Steinhauer, M., Weigant, W.: The Dirichlet problem for steady viscous compressible flow in three dimensions. J. Math. Pures Appl. 97, 85–97 (2012)

    Article  MathSciNet  Google Scholar 

  • Galdi, An Introduction: to the Mathematical Theory of the Navier-Stokes equations, I. Spinger- Verlag, Heidelberg, New-York (1994)

    MATH  Google Scholar 

  • Gilbarg D., Trudinger N.: Elliptic partial differential equations of second order, 2nd edition, Grundlehren Math. Wiss., vol. 224, Springer-Verlag, Berlin, Heidelberg, New York, 1983

  • Jiang, S., Zhou, C.: Existence of weak solutions to the three-dimensional steady compressible Naiver-Stokes equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 485–498 (2011)

    Article  MathSciNet  Google Scholar 

  • Ko, S., Pustejovska, P., Suli, E.: Finite element approximation of an incompressible chemically reacting non-Newtonian fluid. Math. Mod. Numerical Appl. 52(2), 509–541 (2018)

    Article  MathSciNet  Google Scholar 

  • Ko, S., Suli, E.: Finite element approximation of steady flows of generalized Newtonian fluids with concentration-dependent power-law index. Math. Comp. 88(317), 1061–1090 (2019)

    Article  MathSciNet  Google Scholar 

  • Lions P.: Mathematical topics in fluid mechanics. Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998

  • Liang, Z., Wang, D.: Stationary Cahn-Hilliard-Navier-Stokes equations for the diffuse interface model of compressible flows. Math. Mod. Meth. Appl. Sci. 30, 2445–2486 (2020)

    Article  MathSciNet  Google Scholar 

  • Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654 (1998)

    Article  MathSciNet  Google Scholar 

  • Mucha, P.B., Pokorný, M.: On a new approach to the issue of existence and regularity for the steady compressible Navier-Stokes equations. Nonlinearity 19, 1747–1768 (2006)

    Article  MathSciNet  Google Scholar 

  • Mucha P. B., Pokorný M., Zatorska E.: Existence of stationary weak solutions for compressible heat conducting flows. Handbook of mathematical analysis in mechanics of viscous fluids, 2595-2662, Springer, Cham, 2018

  • Novo, S., Novotný, A.: On the existence of weak solutions to the steady compressible Navier-Stokes equations when the density is not square integrable. J. Math. Fluid Mech. 42(3), 531–550 (2002)

    MathSciNet  MATH  Google Scholar 

  • Novotný A., Stras̆kraba I.: Introduction to the mathematical theory of compressible flow. Oxford lecture series in mathematics and its applications, 27. Oxford University Press, Oxford, 2004

  • Plotnikov, P.I., Weigant, W.: Steady 3D viscous compressible flows with adiabatic exponent \(\gamma \in (1,\infty )\). J. Math. Pures Appl. 104, 58–82 (2015)

    Article  MathSciNet  Google Scholar 

  • Stein, E.: Singular integrals and differentiability properties of functions. Princeton Univ. Press, Princeton, New Jersey (1970)

    MATH  Google Scholar 

  • Ziemer, W.P.: Weakly differentiable functions. Springer, New York (1989)

    Book  Google Scholar 

Download references

Acknowledgements

The research of Z. Liang was supported by the fundamental research funds for central universities (JBK 2202045). The research of D. Wang was partially supported by the National Science Foundation under grant DMS-1907519. The authors would like to thank the anonymous referees for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehua Wang.

Additional information

Communicated by Leslie Smith.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Wang, D. Weak Solutions to the Stationary Cahn–Hilliard/Navier–Stokes Equations for Compressible Fluids. J Nonlinear Sci 32, 41 (2022). https://doi.org/10.1007/s00332-022-09799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09799-5

Keywords

Mathematics Subject Classification

Navigation