Skip to main content
Log in

Stability of Elliptic Solutions to the sinh-Gordon Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Using the integrability of the sinh-Gordon equation, we demonstrate the spectral stability of its elliptic solutions. With the first three conserved quantities of the sinh-Gordon equation, we construct a Lyapunov functional. By using such Lyapunov functional, we show that these elliptic solutions are orbitally stable with respect to subharmonic perturbations of arbitrary period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  Google Scholar 

  • Arnold, V.I.: On an a priori estimate in the theory of hydrodynamical stability. Am. Math. Soc. Transl. 79, 267–269 (1969)

    Google Scholar 

  • Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York, NY (1997)

    Google Scholar 

  • Bottman, N., Deconinck, B.: KdV cnoidal waves are spectrally stable. DCDS-A 25, 1163–1180 (2009)

    Article  MathSciNet  Google Scholar 

  • Bottman, N., Deconinck, B., Nivala, M.: Elliptic solutions of the defocusing NLS equation are stable. J. Phys. A 44, 285 (2011)

    Article  MathSciNet  Google Scholar 

  • Chen, F.: Introduction to Plasma Physics and Controlled Fusion. Plenum Press, New York (1984)

    Book  Google Scholar 

  • Chern, S.S.: Geometrical interpretation of the sinh-Gordon equation. Ann. Pol. Math. 1, 63–69 (1981)

    Article  MathSciNet  Google Scholar 

  • Deconinck, B., Kapitula, T.: On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg–de Vries equations. In: Guyenne, P., Nicholls, D., Sulem, C. (eds) Hamiltonian Partial Differential Equations and Applications. Fields Inst. Commun. 75. Springer, New York, pp. 285–322 (2020)

  • Deconinck, B., Kapitula, T.: The orbital stability of the cnoidal waves of the Korteweg–de Vries equation. Phys. Lett. A 374, 4018–4022 (2010)

    Article  MathSciNet  Google Scholar 

  • Deconinck, B., Nivala, M.: The stability analysis of the periodic traveling wave solutions of the mKdV equation. Stud. Appl. Math. 126, 17–48 (2011)

    Article  MathSciNet  Google Scholar 

  • Deconinck, B., Segal, B.L.: The stability spectrum for elliptic solutions to the focusing NLS equation. Phys. D 346, 1–19 (2017)

    Article  MathSciNet  Google Scholar 

  • Deconinck, B., Upsal, J.: The orbital stability of elliptic solutions of the Focusing Nonlinear Schrödinger Equation. SIAM J. Math. Anal. 52, 1–41 (2020)

    Article  MathSciNet  Google Scholar 

  • Deconinck, B., McGill, P., Segal, B.L.: The stability spectrum for elliptic solutions to the sine-Gordon equation. Phys. D 360, 17–35 (2020)

    Article  MathSciNet  Google Scholar 

  • Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  • Gallay, T., Pelinovsky, D.: Orbital stability in the cubic defocusing NLS equation: I. Cnoidal periodic waves. J. Differ. Equ. 258, 3607–3638 (2020)

    Article  MathSciNet  Google Scholar 

  • Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  Google Scholar 

  • Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94, 308–348 (1990)

    Article  MathSciNet  Google Scholar 

  • Haragus, M., Kapitula, T.: On the spectra of periodic waves for infinite-dimensional Hamiltonian systems. Phys. D 237, 2649–2671 (2008)

    Article  MathSciNet  Google Scholar 

  • Hasegawa, A.: Optical Solitons in Fibers. Springer, Berlin (1989)

    Book  Google Scholar 

  • Henry, D.B., Perez, J.F., Wreszinski, W.F.: Stability theory for solitary-wave solutions of scalar field equations. Commun. Math. Phys. 85, 351–361 (1982)

    Article  MathSciNet  Google Scholar 

  • Holm, D.D., Marsden, J.E., Ratiu, T., Weinstein, A.: Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123, 1–116 (1985)

    Article  MathSciNet  Google Scholar 

  • Jones, C.K.R.T., Marangell, R., Miller, P.D., Plaza, R.G.: On the stability analysis of periodic sine-Gordon traveling waves. Phys. D 251, 63–74 (2013)

    Article  MathSciNet  Google Scholar 

  • Jones, C.K.R.T., Marangell, R., Miller, P.D., Plaza, R.G.: Spectral and modulational stability of periodic wavetrains for the nonlinear Klein-Gordon equation. J. Differ. Equ. 257, 4632–4703 (2014)

    Article  MathSciNet  Google Scholar 

  • Larsen, A.L., Sanchez, N.: sinh-Gordon, cosh-Gordon, and Liouville equations for strings and multistrings in constant curvature spacetimes. Phys. Rev. D 54, 2801–2807 (1996)

    Article  MathSciNet  Google Scholar 

  • Lawden D.F.: Elliptic Functions and Applications (Applied Mathematical Sciences vol 80). Springer, New York (1989)

  • Maddocks, J.H., Sachs, R.L.: On the stability of KdV multi-solitons. Commun. Pure Appl. Math. 46, 867–901 (1993)

    Article  MathSciNet  Google Scholar 

  • McKean, H.P.: The sin-gordon and sinh-gordon equations on the circle. Commun. Pure Appl. Math. 34, 197–257 (1981)

    Article  Google Scholar 

  • Natali, F.: On periodic waves for sine-and sinh-Gordon equations. J. Math. Anal. Appl. 379, 334–350 (2011)

    Article  MathSciNet  Google Scholar 

  • Newell, A.C.: Solitons in Mathematics and Physics, vol. 48. SIAM, Philadelphia (1985)

    Book  Google Scholar 

  • NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.14 of 2016-12-21. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds

  • Nivala, M., Deconinck, B.: Periodic finite-genus solutions of the KdV equation are orbitally stable. Phys. D 239, 1147–1158 (2010)

    Article  MathSciNet  Google Scholar 

  • Sachs, R.L.: Completeness of derivatives of squared Schrödinger eigenfunctions and explicit solutions of the linearized KdV equation. SIAM J. Math. Anal. 14, 674–683 (1983)

    Article  MathSciNet  Google Scholar 

  • Upsal, J., Deconinck, B.: Real Lax spectrum implies spectral stability. Stud. Appl. Math. 145, 765–790 (2020)

    Article  MathSciNet  Google Scholar 

  • Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 39, 51–67 (2003)

    Article  MathSciNet  Google Scholar 

  • Wiegel, R.L.: A presentation of cnoidal wave theory for practical application. J. Fluid Mech. 7, 273–286 (1960)

    Article  MathSciNet  Google Scholar 

  • Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol. 2, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees and editor for their excellent suggestions. WS has been supported by the National Natural Science Foundation of China under Grant No. 61705006, and by the Fundamental Research Funds of the Central Universities (No. 230201606500048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Rong Sun.

Additional information

Communicated by Peter Miller.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma

For \(c>1\), \(\frac{P(\zeta _{1})}{\zeta ^2_{1}}>0\) and \(\frac{P(\zeta _{2})}{\zeta ^2_{2}}<0\), while for \(c<-1\), \(\frac{P(\zeta _{1})}{\zeta ^2_{1}}<0\) and \(\frac{P(\zeta _{2})}{\zeta ^2_{2}}>0\).

Proof

  • For \(c>1\),

    $$\begin{aligned}&\frac{P(\zeta _{1})}{\zeta ^2_{1}}=8 c \sqrt{{\mathcal {E}}^2-1} K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) +8 ({\mathcal {E}}+1) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) \nonumber \\&\quad -8 ({\mathcal {E}}+1) E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) . \end{aligned}$$
    (83)

    Since \(E(k)<K(k)\), \(c>1\) and \({\mathcal {E}}>1\), we have \(\frac{P(\zeta _{1})}{\zeta ^2_{1}}>0\).

    $$\begin{aligned}&\frac{P(\zeta _{2})}{\zeta ^2_{2}}= 8 c \left( -\sqrt{{\mathcal {E}}^2-1}\right) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) +8 ({\mathcal {E}}+1) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) \nonumber \\&\quad -8 ({\mathcal {E}}+1) E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) . \end{aligned}$$
    (84)

    Let \(\frac{P(\zeta _{2})}{\zeta ^2_{2}}=F(c)\). We note that \(F'(c)=8\left( -\sqrt{{\mathcal {E}}^2-1}\right) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) <0\). We have

    $$\begin{aligned}&F(c)<F(1)=8 \left( -\sqrt{{\mathcal {E}}^2-1}\right) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) +8 ({\mathcal {E}}+1) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) \nonumber \\&\quad -8 ({\mathcal {E}}+1) E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) . \end{aligned}$$
    (85)

    Using \(\frac{E(k)}{K(k)}>k'=\sqrt{1-k^2}\) , see [1, 19.9.8], we have

    $$\begin{aligned}&8 \left( -\sqrt{{\mathcal {E}}^2-1}\right) +8 ({\mathcal {E}}+1)-8 ({\mathcal {E}}+1) \frac{E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) }{K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) }<8 \left( -\sqrt{{\mathcal {E}}^2-1}\right) \nonumber \\&\quad +8 ({\mathcal {E}}+1)-8\sqrt{2}\sqrt{{\mathcal {E}}+1}. \end{aligned}$$
    (86)

    Let \(Q({\mathcal {E}})=8 \left( -\sqrt{{\mathcal {E}}^2-1}\right) +8 ({\mathcal {E}}+1)-8\sqrt{2}\sqrt{{\mathcal {E}}+1}\). We note \(Q'({\mathcal {E}})=-\frac{8 {\mathcal {E}}}{\sqrt{{\mathcal {E}}^2-1}}+8-\frac{4 \sqrt{2}}{\sqrt{{\mathcal {E}}+1}}<-\frac{4 \sqrt{2}}{\sqrt{{\mathcal {E}}+1}}<0\). So we have \(Q({\mathcal {E}})<Q(1)=0\) for \({\mathcal {E}}>1\). Therefore, we have \(\frac{P(\zeta _{2})}{\zeta ^2_{2}}=F(c)<F(1)<K \left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) Q({\mathcal {E}})<0\).

  • For \(c<-1\),

    $$\begin{aligned} \frac{P(\zeta _{1})}{\zeta ^2_{1}}=8 c \sqrt{{\mathcal {E}}^2-1} K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) +8 ({\mathcal {E}}+1) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) -8 ({\mathcal {E}}+1) E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) .\nonumber \\ \end{aligned}$$
    (87)

    Let \(\frac{P(\zeta _{1})}{\zeta ^2_{1}}=G(c)\). We note that \(G'(c)=8\left( \sqrt{{\mathcal {E}}^2-1}\right) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) >0\). We have

    $$\begin{aligned}&G(c)<G(-1)=8 \left( -\sqrt{{\mathcal {E}}^2-1}\right) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) +8 ({\mathcal {E}}+1) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) \nonumber \\&\quad -8 ({\mathcal {E}}+1) E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) . \end{aligned}$$
    (88)

    Again, using \(\frac{E(k)}{K(k)}>k'=\sqrt{1-k^2}\), we have

    $$\begin{aligned}&8 \left( -\sqrt{{\mathcal {E}}^2-1}\right) +8 ({\mathcal {E}}+1)-8 ({\mathcal {E}}+1) \frac{E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) }{K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) }<8 \left( -\sqrt{{\mathcal {E}}^2-1}\right) \nonumber \\&\quad +8 ({\mathcal {E}}+1)-8\sqrt{2}\sqrt{{\mathcal {E}}+1}. \end{aligned}$$
    (89)

    We know \(Q({\mathcal {E}})<Q(1)=0\) for \({\mathcal {E}}>1\). Therefore, \(\frac{P(\zeta _{1})}{\zeta ^2_{1}}=G(c)<G(-1)<K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) Q({\mathcal {E}})<0\).

    $$\begin{aligned}&\frac{P(\zeta _{2})}{\zeta ^2_{2}}= 8 c \left( -\sqrt{{\mathcal {E}}^2-1}\right) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) +8 ({\mathcal {E}}+1) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) \nonumber \\&\quad -8 ({\mathcal {E}}+1) E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) . \end{aligned}$$
    (90)

    Since \(E(k)<K(k)\), \(c<-1\) and \({\mathcal {E}}>1\), we have \(\frac{P(\zeta _{2})}{\zeta ^2_{2}}>0\). This finishes the proof of the lemma.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, WR., Deconinck, B. Stability of Elliptic Solutions to the sinh-Gordon Equation. J Nonlinear Sci 31, 63 (2021). https://doi.org/10.1007/s00332-021-09722-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09722-4

Keywords

Mathematics Subject Classification

Navigation