Skip to main content
Log in

On the exact solutions of nonlinear evolution equations by the improved \(\tan (\varphi /2)\)-expansion method

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, the improved \(\tan (\varphi /2)\)-expansion method (ITEM) is proposed to obtain more general exact solutions of the nonlinear evolution equations (NLEEs). This method is applied to the generalised Hirota–Satsuma coupled KdV (HScKdV) equation and \((2+1)\)-dimensional Nizhnik–Novikov–Veselov (NNV) system. We have obtained four types of solutions of these equations such as hyperbolic, trigonometric, exponential and rational functions as an advantage of this method. These solutions include solitons, rational, periodic and kink solutions. Moreover, modulation instability is used to establish stability of the obtained solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N V Priya and M Senthilvelan, Commun. Nonlinear Sci. Numer. Simul. 36, 366 (2016)

    MathSciNet  ADS  Google Scholar 

  2. G F Deng and Y T Gao, Eur. Phys. J. Plus 132, 255 (2017)

    Google Scholar 

  3. D W Zuo, Y T Gao, L Xue and Y J Feng, Opt. Quant. Elect. 48, 1 (2016)

    Google Scholar 

  4. M L Wang, X Z Li and J L Zhang, Phys. Lett. A 372, 417 (2008)

    MathSciNet  ADS  Google Scholar 

  5. M N Ali, A R Seadawy and S M Husnine, Pramana – J. Phys. 91: 48 (2018)

    ADS  Google Scholar 

  6. N A Kudryashov, Chaos Solitons Fractals 24, 1217 (2005)

    MathSciNet  ADS  Google Scholar 

  7. Y Chen and Q Wang, Chaos Solitons Fractals 24, 745 (2005)

    MathSciNet  ADS  Google Scholar 

  8. S Liu, Z Fu, S Liu and Q Zhao, Phys. Lett. A 289, 69 (2001)

    MathSciNet  ADS  Google Scholar 

  9. M Dehghan and F Shakeri, J. Porous Media 11, 765 (2008)

    Google Scholar 

  10. H Jafari, A Kadem and D Baleanu, Abstr. Appl. Anal. 2014, 1 (2014)

    Google Scholar 

  11. J H He, Int. J. Nonlinear Mech. 34, 699 (1999)

    ADS  Google Scholar 

  12. A M Wazwaz, Appl. Math. Comput. 177, 755 (2006)

    MathSciNet  Google Scholar 

  13. J M Heris and I Zamanpour, Stat. Optim. Inf. Comput. 2, 47 (2014)

    MathSciNet  Google Scholar 

  14. J M Heris and M Lakestani, Commun. Numer. Anal. 2013, 1 (2013)

    Google Scholar 

  15. X H Wu and J M He, Comput. Math. Appl. 54, 966 (2007)

    MathSciNet  Google Scholar 

  16. X Zhao, L Wang and W Sun, Chaos Solitons Fractals 28, 448 (2006)

    MathSciNet  ADS  Google Scholar 

  17. X Liu, W Zhang and Z Li, Adv. App. Math. Mech. 4, 122 (2012)

    Google Scholar 

  18. S Abbasbandy and A Shirzadi, Commun. Nonlinear Sci.  15, 1759 (2010)

    Google Scholar 

  19. K R Adem and C M Khalique, Abstr. Appl. Anal. 2013, 1 (2013)

    Google Scholar 

  20. A R Seadawy, A Ali and D Lu, Pramana – J. Phys. 92: 88 (2019)

    ADS  Google Scholar 

  21. Z Du, B Tian, X Y Xie, J Chai and X Y Wu, Pramana – J. Phys. 90: 45 (2018)

    ADS  Google Scholar 

  22. J Manafian and M Lakestani, Pramana – J. Phys. 92: 41 (2019)

    ADS  Google Scholar 

  23. J M Kosterlitz and D J Thouless, Two-dimensional physics, in: Progress in low temperature physics (Elsevier, Amsterdam, 1978) Vol. 7, p. 371

  24. Y T Wu, X G Geng, X B Hu and S M Zhu, Phys. Lett. A 255, 259 (1999)

    MathSciNet  ADS  Google Scholar 

  25. R Hirota and J Satsuma, Phys. Lett. A 85, 407 (1981)

    MathSciNet  ADS  Google Scholar 

  26. D D Ganji and M Rafei, Phys. Lett. A 356, 131 (2006)

    MathSciNet  ADS  Google Scholar 

  27. Z Li, Int. J. Mod. Phys. B 24, 4333 (2010)

    ADS  Google Scholar 

  28. D Lu, B Hong and L Tian, Comput. Math. Appl. 53, 1181 (2007)

    MathSciNet  Google Scholar 

  29. S Lou, Phys. Lett. A 277, 94 (2000)

    MathSciNet  ADS  Google Scholar 

  30. D Wang and H Q Zhang, Chaos Solitons Fractals 25, 601 (2005)

    MathSciNet  ADS  Google Scholar 

  31. J F Zhang and C L Zheng, Chin. J. Phys. 41, 242 (2003)

    Google Scholar 

  32. B G Konopelchenko, Phys. Lett. B 414, 58 (1997)

    MathSciNet  ADS  Google Scholar 

  33. G W Wang, T Z Xu, H A Zedan, R Abazari, H Triki and A Biswas, Appl. Comput. Math. 14, 260 (2015)

    MathSciNet  Google Scholar 

  34. M F El-Sayed, G M Moatimid, M H M Moussa, R M El-Shiekh and M A Al-Khawlani, Int. J. Adv. Appl. Math. Mech. 2, 19 (2014)

    MathSciNet  Google Scholar 

  35. A M Wazwaz, Appl. Math. Comput. 187, 1584 (2007)

    MathSciNet  Google Scholar 

  36. J Manafian, M Lakestani and A Bekir, Int. J. Appl. Comput. Math. 2, 342 (2015)

    Google Scholar 

  37. G P Agrawal, Nonlinear fiber optics, 5th edn (Elsevier, New York, 2012) p. 648

    Google Scholar 

  38. A R Seadawy, M Arshad and D Lu, Eur. Phys. J. Plus 132, 1 (2017)

    Google Scholar 

  39. E Fan, Phys. Lett. A 282, 18 (2001)

    MathSciNet  ADS  Google Scholar 

  40. Y Yu, Q Wang and H Zhang, Chaos Solitons Fractals 26, 1415 (2005)

    MathSciNet  ADS  Google Scholar 

  41. E Yusufoğlu and A Bekir, Int. J. Comput. Math. 83, 915 (2006)

    MathSciNet  Google Scholar 

  42. M T Gencoglu and A Akgul, New Trends in Mathematical Sciences 5, 262 (2017)

    Google Scholar 

  43. D Feng and K Li, Phys. Lett. A 375, 2201 (2011)

    MathSciNet  ADS  Google Scholar 

  44. A H A Ali, Phys. Lett. A 363, 420 (2007)

    MathSciNet  ADS  Google Scholar 

  45. A M Wazwaz, Partial differential equations and solitary waves theory (Springer, Berlin, 2010) p. 741

    MATH  Google Scholar 

  46. H A Ghany, Chin. J. Phys.49, 926 (2011)

    Google Scholar 

  47. A A Zaidi, M D Khan and I Naeem, Math. Probl. Eng. 2018, 1 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeşim Sağlam Özkan.

Additional information

Dedicated to Prof. Mehmet Cagliyan on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özkan, Y.S., Yaşar, E. On the exact solutions of nonlinear evolution equations by the improved \(\tan (\varphi /2)\)-expansion method. Pramana - J Phys 94, 37 (2020). https://doi.org/10.1007/s12043-019-1883-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1883-3

Keywords

PACS Nos

Navigation