Skip to main content
Log in

The Magnus Expansion for Stochastic Differential Equations

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, all the terms in the stochastic Magnus expansion are presented by rooted trees. First, stochastic Magnus methods for linear stochastic differential equations are constructed by truncating the stochastic Magnus expansion. Then, explicit stochastic Magnus methods are constructed by Picard’s iteration for nonlinear stochastic differential equations on matrix Lie group. Furthermore, general nonlinear stochastic differential equations are transformed into linear operator stochastic differential equations by using the Lie derivative. Finally, numerical methods for general nonlinear stochastic differential equations are constructed by using the theory of the stochastic Magnus expansion for the linear case. In particular, for the commutative case, it is shown that the stochastic Magnus expansion provides a novel way to construct computationally inexpensive and arbitrarily high-order numerical methods while avoiding the simulation of multiple stochastic integrals. Moreover, the proposed methods are shown to preserve the intrinsic properties of the original system well and the numerical experiments agree with the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blanes, S., Casas, F., Oteo, J.A., Ros, J.: The Magnus expansion and some of its applications. Phys. Rep. Rev. Sect. Phys. Lett. 470(5–6), 151 (2009)

    MathSciNet  Google Scholar 

  • Burrage, K., Burrage, P.M.: High strong order methods for non-commutative stochastic ordinary differential equation systems and the Magnus formula. Phys. D Nonlinear Phenom. 133(1–4), 34 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Burrage, P.M., Burrage, K.: Structure-preserving Runge–Kutta methods for stochastic Hamiltonian equations with additive noise. Numer. Algorithms 65(3), 519 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Cao, Z., Grima, R.: Linear mapping approximation of gene regulatory networks with stochastic dynamics. Nat. Commun. 9(1), 3305 (2018)

    Article  Google Scholar 

  • Casas, F., Iserles, A.: Explicit Magnus expansions for nonlinear equations. J. Phys. A Math. Gen. 39(19), 5445 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Celledoni, E., Owren, B.: Preserving first integrals with symmetric Lie group methods. Discrete Contin. Dyn. Syst. 34(3), 977 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Celledoni, E., Marthinsen, H., Owren, B.: An introduction to Lie group integrators-basics, new developments and applications. J. Comput. Phys. 257(2), 1040 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Crouch, P.E., Grossman, R.: Numerical integration of ordinary differential equations on manifolds. J. Nonlinear Sci. 3(1), 1 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Debrabant, K., Kværnø, A.: B-series analysis of stochastic Runge–Kutta methods that use an iterative scheme to compute their internal stage values. SIAM J. Numer. Anal. 47(1), 181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Debrabant, K., Kværnø, A.: Cheap arbitrary high order methods for single integrand SDEs. BIT Numer. Math. 57(1), 153 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Hairer, E., Hochbruck, M., Iserles, A., Lubich, C.: Geometric Numerical Integration Geometric Numerical Integration. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  • Iserles, A., Macnamara, S.: Applications of Magnus expansions and pseudospectra to Markov processes. Eur. J. Appl. Math. 30(2), 400 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Iserles, A., Nørsett, S.P.: On the solution of linear differential equations in Lie groups. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 357(1754), 983 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta Numer. 9(2), 215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  • Li, X., Zhang, C., Ma, Q., Ding, X.: Discrete gradient methods and linear projection methods for preserving a conserved quantity of stochastic differential equations. Int. J. Comput. Math. 95(12), 2511 (2018)

    Article  MathSciNet  Google Scholar 

  • Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  • Malham, S.J.A., Wiese, A.: Stochastic Lie group integrators. SIAM J. Sci. Comput. 30(2), 597 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Mananga, E.S., Thibault, C.: Introduction of the Floquet–Magnus expansion in solid-state nuclear magnetic resonance spectroscopy. J. Chem. Phys. 135(4), 044109 (2011)

    Article  Google Scholar 

  • Mao, X.: Stochastic Differential Equations and Applications Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (2007)

    MATH  Google Scholar 

  • Milstein, G.N.: Numerical Integration of Stochastic Differential Equations Numerical Integration of Stochastic Differential Equations. Kluwer Academic Publishers, Dordrecht (1995)

    Book  MATH  Google Scholar 

  • Munthe-Kaas, H.Z.: Runge–Kutta methods on Lie groups. BIT Numer. Math. 38(1), 92 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  • Owren, B.: Order conditions for commutator-free Lie group methods. J. Phys. A Math. Gen. 39(19), 5585 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Quispel, G.R.W., Mclaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A Math. Theor. 41(4), 045206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Tang, Y., Cao, J., Liu, X., Sun, Y.: Symplectic methods for the Ablowitz–Ladik discrete nonlinear Schrödinger equation. J. Phys. A Math. Theor. 40(10), 2425 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to the editor and the reviewers for their careful review and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ma.

Additional information

Communicated by Dr. Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Key R&D Program of China (No. 2017YFC1405600), the National Natural Science Foundation of China (Nos. 11501150 and 11701124), and the Natural Science Foundation of Shandong Province of China (No. ZR2017PA006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ma, Q., Yao, Z. et al. The Magnus Expansion for Stochastic Differential Equations. J Nonlinear Sci 30, 419–447 (2020). https://doi.org/10.1007/s00332-019-09578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09578-9

Keywords

Mathematics Subject Classification

Navigation