Skip to main content
Log in

Dimension Reduction for the Landau-de Gennes Model in Planar Nematic Thin Films

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We use the method of \(\Gamma \)-convergence to study the behavior of the Landau-de Gennes model for a nematic liquid crystalline film in the limit of vanishing thickness. In this asymptotic regime, surface energy plays a greater role, and we take particular care in understanding its influence on the structure of the minimizers of the derived two-dimensional energy. We assume general weak anchoring conditions on the top and the bottom surfaces of the film and the strong Dirichlet boundary conditions on the lateral boundary of the film. The constants in the weak anchoring conditions are chosen so as to enforce that a surface-energy-minimizing nematic Q-tensor has the normal to the film as one of its eigenvectors. We establish a general convergence result and then discuss the limiting problem in several parameter regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alama, S., Bronsard, L., Lamy, X.: Minimizers of the Landau-de Gennes Energy Around a Spherical Colloid Particle, arXiv:1504.00421 [math.AP] (2015)

  • Anzellotti, G., Baldo, S., Percivale, D.: Dimension reduction in variational problems, asymptotic development in \(\Gamma \)-convergence and thin structures in elasticity. Asymptot. Anal. 9(1), 61–100 (1994)

    MATH  MathSciNet  Google Scholar 

  • Ball, J.M., Majumdar, A.: Nematic liquid crystals: from Maier-Saupe to a continuum theory. Mol. Cryst. Liquid Cryst. 525(1), 1–11 (2010)

    Article  Google Scholar 

  • Ball, J.M., Zarnescu, A.: Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202(2), 493–535 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Bauman, P., Park, J., Phillips, D.: Analysis of nematic liquid crystals with disclination lines. Arch. Ration. Mech. Anal. 205(3), 795–826 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Berger, M.S., Fraenkel, L.E.: On the asymptotic solution of a nonlinear Dirichlet problem. J. Math. Mech. 19, 553–585 (1969/1970)

  • Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau vortices. Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser, Boston (1994)

  • Biscari, P., Peroli, G.G., Sluckin, T.: The topological microstructure of defects in nematic liquid crystals. Mol. Cryst. Liq. Cryst. 292(1), 91–101 (1997)

    Article  Google Scholar 

  • Canevari, G.: Biaxiality in the asymptotic analysis of a 2-D Landau-de Gennes model for liquid crystals, arXiv:1307.8065 [math.AP] (2013)

  • Chiccoli, C., Feruli, I., Lavrentovich, O., Pasini, P., Shiyanovskii, S., Zannoni, C.: Topological defects in schlieren textures of biaxial and uniaxial nematics. Phys. Rev. E 66, 030701 (2002)

    Article  Google Scholar 

  • Contreras, A., Sternberg, P.: \(\Gamma \)-convergence and the emergence of vortices for Ginzburg–Landau on thin shells and manifolds. Calc. Var. Partial Differ. Equ. 38(1–2), 243–274 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and Their Applications, vol. 8, Birkhäuser, Boston (1993)

  • Davis, T.A., Gartland Jr, E.C.: Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35(1), 336–362 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Ericksen, J.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113(2), 97–120 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Fournier, J.-B., Galatola, P.: Modeling planar degenerate wetting and anchoring in nematic liquid crystals. Europhys. Lett. 72(3), 403 (2005)

    Article  Google Scholar 

  • Golovaty D., Montero, J.A.: On minimizers of a landau-de gennes energy functional on planar domains. Arch. Ration. Mech. Anal. 1–44 (2013)

  • Kaiser, P., Wiese, W., Hess, S.: Stability and instability of an uniaxial alignment against biaxial distortions in the isotropic and nematic phases of liquid crystals. J. Non-Equilib. Thermodyn. 17(2), 153–170 (1992)

    Article  MATH  Google Scholar 

  • Kralj, S., Virga, E.G.: Universal fine structure of nematic hedgehogs. J. Phys. A: Math. Gen. 34(4), 829 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Longa, L., Monselesan, D., Trebin, H.-R.: An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals. Liq. Cryst. 2(6), 769–796 (1987)

    Article  Google Scholar 

  • Majumdar, A., Zarnescu, A.: Landau-de Gennes theory of nematic liquid crystals: the Oseen–Frank limit and beyond. Arch. Ration. Mech. Anal. 196(1), 227–280 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Mottram, N.J., Newton, C.: Introduction to \({Q}\)-Tensor Theory. Tech. Rep. 10, Department of Mathematics, University of Strathclyde (2004)

  • Napoli, G., Vergori, L.: Surface free energies for nematic shells. Phys. Rev. E 85, 061701 (2012)

    Article  Google Scholar 

  • Osipov, M.A., Hess, S.: Density functional approach to the theory of interfacial properties of nematic liquid crystals. J. Chem. Phys. 99(5), 4181–4190 (1993)

    Article  Google Scholar 

  • Palffy-Muhoray, P., Gartland, E., Kelly, J.: A new configurational transition in inhomogeneous nematics. Liq. Cryst. 16(4), 713–718 (1994)

    Article  Google Scholar 

  • Schopohl, N., Sluckin, T.: Defect core structure in nematic liquid crystals. Phys. Rev. Lett. 59, 2582–2584 (1987)

    Article  Google Scholar 

  • Segatti, A., Snarski, M., Marco, V.: Analysis of a variational model for nematic shells, arXiv:1408.2795 [math-ph] (2014)

  • Sen, A., Sullivan, D.: Landau-de gennes theory of wetting and orientational transitions at a nematic–liquid–substrate interface. Phys. Rev. A 35(3), 1391 (1987)

    Article  Google Scholar 

  • Sluckin, T., Poniewierski, A., Croxton, C.: Fluid Interfacial Phenomena, p. 215. Wiley, Chichester (1986)

  • Sonnet, A., Virga, E.: Dissipative Ordered Fluids: Theories for Liquid Crystals. Springer, New York (2012)

  • Virga, E.G.: Variational Theories for Liquid Crystals, vol. 8 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London (1994)

    Book  Google Scholar 

  • Virga, E.G.: Curvature Potentials for Defects on Nematic Shells. Lecture notes, Isaac Newton Institute for Mathematical Sciences, Cambridge (2013)

Download references

Acknowledgments

D.G. acknowledges support from NSF DMS-1434969. P.S. acknowledges support from NSF DMS-1101290 and NSF DMS-1362879.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Golovaty.

Additional information

Communicated by Robert V. Kohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovaty, D., Montero, J.A. & Sternberg, P. Dimension Reduction for the Landau-de Gennes Model in Planar Nematic Thin Films. J Nonlinear Sci 25, 1431–1451 (2015). https://doi.org/10.1007/s00332-015-9264-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9264-7

Keywords

Mathematics Subject Classification

Navigation