Skip to main content
Log in

ITHscore: comprehensive quantification of intra-tumor heterogeneity in NSCLC by multi-scale radiomic features

  • Imaging Informatics and Artificial Intelligence
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To quantify intra-tumor heterogeneity (ITH) in non-small cell lung cancer (NSCLC) from computed tomography (CT) images.

Methods

We developed a quantitative ITH measurement—ITHscore—by integrating local radiomic features and global pixel distribution patterns. The associations of ITHscore with tumor phenotypes, genotypes, and patient’s prognosis were examined on six patient cohorts (n = 1399) to validate its effectiveness in characterizing ITH.

Results

For stage I NSCLC, ITHscore was consistent with tumor progression from stage IA1 to IA3 (p < 0.001) and captured key pathological change in terms of malignancy (p < 0.001). ITHscore distinguished the presence of lymphovascular invasion (p = 0.003) and pleural invasion (p = 0.001) in tumors. ITHscore also separated patient groups with different overall survival (p = 0.004) and disease-free survival conditions (p = 0.005). Radiogenomic analysis showed that the level of ITHscore in stage I and stage II NSCLC is correlated with heterogeneity-related pathways. In addition, ITHscore was proved to be a stable measurement and can be applied to ITH quantification in head-and-neck cancer (HNC).

Conclusions

ITH in NSCLC can be quantified from CT images by ITHscore, which is an indicator for tumor phenotypes and patient’s prognosis.

Key Points

• ITHscore provides a radiomic quantification of intra-tumor heterogeneity in NSCLC.

• ITHscore is an indicator for tumor phenotypes and patient’s prognosis.

• ITHscore has the potential to be generalized to other cancer types such as HNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAH:

Atypical adenomatous hyperplasia

AIS:

Adenocarcinoma in situ

CPH:

Cox proportional hazard

DE:

Differentially expressed

DFS:

Disease-free survival

DMFS:

Distant metastasis-free survival

GDPH:

Guangdong Provincial Peoples’ Hospital

GSEA:

Gene set enrichment analysis

HNC:

Head-and-neck cancer

HR:

Hazard ratio

IAC:

Invasive adenocarcinoma

ITH:

Intra-tumor heterogeneity

K-M:

Kaplan-Meier

LRFS:

Local recurrence-free survival

LUAD:

Lung adenocarcinoma

LVI:

Lymphovascular invasion

MIA:

Minimally invasive adenocarcinoma

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

PI:

Pleural invasion

TCIA:

The Cancer Imaging Archive

References

  1. Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553:446–454. https://doi.org/10.1038/nature25183

    Article  CAS  Google Scholar 

  2. Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334. https://doi.org/10.1038/nrc3261

    Article  CAS  Google Scholar 

  3. Jamal-Hanjani M, Quezada SA, Larkin J, Swanton C (2015) Translational implications of tumor heterogeneity. Clin Cancer Res 21:1258–1266. https://doi.org/10.1158/1078-0432.CCR-14-1429

    Article  CAS  Google Scholar 

  4. Hammerman PS, Hayes DN, Grandis JR (2015) Therapeutic insights from genomic studies of head and neck squamous cell carcinomas. Cancer Discov 5:239–244. https://doi.org/10.1158/2159-8290.CD-14-1205

    Article  CAS  Google Scholar 

  5. O’Sullivan B, Huang SH, Su J et al (2016) Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. Lancet Oncol 17:440–451. https://doi.org/10.1016/S1470-2045(15)00560-4

    Article  Google Scholar 

  6. McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:613–628. https://doi.org/10.1016/j.cell.2017.01.018

    Article  CAS  Google Scholar 

  7. Chen Z, Fillmore CM, Hammerman PS et al (2014) Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14:535–546. https://doi.org/10.1038/nrc3775

    Article  CAS  Google Scholar 

  8. Ang KK, Harris J, Wheeler R et al (2010) Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 363:24–35. https://doi.org/10.1056/NEJMoa0912217

    Article  CAS  Google Scholar 

  9. Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15:81–94. https://doi.org/10.1038/nrclinonc.2017.166

    Article  CAS  Google Scholar 

  10. de Sousa VML, Carvalho L (2018) Heterogeneity in lung cancer. Pathobiology 85:96–107. https://doi.org/10.1159/000487440

    Article  Google Scholar 

  11. Reck M, Rabe KF (2017) Precision diagnosis and treatment for advanced non–small-cell lung cancer. N Engl J Med 377:849–861. https://doi.org/10.1056/NEJMra1703413

    Article  CAS  Google Scholar 

  12. Lee G, Bak SH, Lee HY (2018) CT radiomics in thoracic oncology: technique and clinical applications. Nucl Med Mol Imaging 52:91–98. https://doi.org/10.1007/s13139-017-0506-5

    Article  Google Scholar 

  13. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141

    Article  Google Scholar 

  14. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169

    Article  Google Scholar 

  15. O’Connor JPB, Rose CJ, Waterton JC et al (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21:249–257. https://doi.org/10.1158/1078-0432.CCR-14-0990

    Article  CAS  Google Scholar 

  16. Wu J, Aguilera T, Shultz D et al (2016) Early-stage non–small cell lung cancer: quantitative imaging characteristics of 18 F fluorodeoxyglucose PET/CT allow prediction of distant metastasis. Radiology 281:270–278. https://doi.org/10.1148/radiol.2016151829

    Article  Google Scholar 

  17. Song J, Shi J, Dong D et al (2018) A new approach to predict progression-free survival in stage IV EGFR-mutant NSCLC patients with EGFR-TKI therapy. Clin Cancer Res 24:3583–3592. https://doi.org/10.1158/1078-0432.CCR-17-2507

    Article  CAS  Google Scholar 

  18. Wu J, Cao G, Sun X et al (2018) Intratumoral spatial heterogeneity at perfusion mr imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy. Radiology 288:26–35. https://doi.org/10.1148/radiol.2018172462

    Article  Google Scholar 

  19. Xie C, Yang P, Zhang X et al (2019) Sub-region based radiomics analysis for survival prediction in oesophageal tumours treated by definitive concurrent chemoradiotherapy. EBioMedicine 44:289–297. https://doi.org/10.1016/j.ebiom.2019.05.023

    Article  Google Scholar 

  20. Wu J, Gensheimer MF, Dong X et al (2016) Robust intratumor partitioning to identify high-risk subregions in lung cancer: a pilot study. Int J Radiat Oncol Biol Phys 95:1504–1512. https://doi.org/10.1016/j.ijrobp.2016.03.018

  21. Li J, Lu H, Fang X et al (2019) Pixel-level clustering reveals intra-tumor heterogeneity in non-small cell lung cancer. In: 2019 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, San Diego, CA, USA, pp 1536–1539

    Chapter  Google Scholar 

  22. Aerts HJWL, Velazquez ER, Leijenaar RTH et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. https://doi.org/10.1038/ncomms5006

    Article  CAS  Google Scholar 

  23. Bakr S, Gevaert O, Echegaray S et al (2018) A radiogenomic dataset of non-small cell lung cancer. Sci Data 5:180202. https://doi.org/10.1038/sdata.2018.202

    Article  CAS  Google Scholar 

  24. Zhao B, James LP, Moskowitz CS et al (2009) Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non–small cell lung cancer. Radiology 252:263–272. https://doi.org/10.1148/radiol.2522081593

    Article  Google Scholar 

  25. van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  CAS  Google Scholar 

  26. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  Google Scholar 

  27. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  Google Scholar 

  28. Wu T, Hu E, Xu S et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2:100141. https://doi.org/10.1016/j.xinn.2021.100141

  29. Liberzon A, Birger C, Thorvaldsdóttir H et al (2015) The molecular signatures database hallmark gene set collection. Cell Syst 1:417–425. https://doi.org/10.1016/j.cels.2015.12.004

    Article  CAS  Google Scholar 

  30. Travis WD, Brambilla E, Noguchi M et al (2011) International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma. J Thorac Oncol 6:244–285. https://doi.org/10.1097/JTO.0b013e318206a221

    Article  Google Scholar 

  31. Zhang C, Zhang J, Xu F-P et al (2019) Genomic landscape and immune microenvironment features of preinvasive and early invasive lung adenocarcinoma. J Thorac Oncol 14:1912–1923. https://doi.org/10.1016/j.jtho.2019.07.031

    Article  CAS  Google Scholar 

  32. Bedard PL, Hansen AR, Ratain MJ, Siu LL (2013) Tumour heterogeneity in the clinic. Nature 501:355–364. https://doi.org/10.1038/nature12627

    Article  CAS  Google Scholar 

  33. Niikawa H, Suzuki T, Miki Y et al (2008) Intratumoral estrogens and estrogen receptors in human non–small cell lung carcinoma. Clin Cancer Res 14:4417–4426. https://doi.org/10.1158/1078-0432.CCR-07-1950

    Article  CAS  Google Scholar 

  34. Nieto MA, Huang RY-J, Jackson RA, Thiery JP (2016) EMT: 2016. Cell 166:21–45. https://doi.org/10.1016/j.cell.2016.06.028

    Article  CAS  Google Scholar 

  35. Nogueira V, Hay N (2013) Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res 19:4309–4314. https://doi.org/10.1158/1078-0432.CCR-12-1424

    Article  CAS  Google Scholar 

  36. Napel S, Mu W, Jardim-Perassi BV et al (2018) Quantitative imaging of cancer in the postgenomic era: radio(geno)mics, deep learning, and habitats. Cancer 124:4633–4649. https://doi.org/10.1002/cncr.31630

    Article  Google Scholar 

  37. Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and reproducibility of radiomic features: a systematic review. International Journal of Radiation Oncology*Biology*Physics 102:1143–1158. https://doi.org/10.1016/j.ijrobp.2018.05.053

  38. Vaidya P, Bera K, Gupta A et al (2020) CT derived radiomic score for predicting the added benefit of adjuvant chemotherapy following surgery in stage I, II resectable non-small cell lung cancer: a retrospective multicohort study for outcome prediction. Lancet Digit Health 2:e116–e128. https://doi.org/10.1016/S2589-7500(20)30002-9

    Article  Google Scholar 

  39. Shiradkar R, Panda A, Leo P et al (2021) T1 and T2 MR fingerprinting measurements of prostate cancer and prostatitis correlate with deep learning–derived estimates of epithelium, lumen, and stromal composition on corresponding whole mount histopathology. Eur Radiol 31:1336–1346. https://doi.org/10.1007/s00330-020-07214-9

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of China (Grant Nos. 61721003 and 81872510), National Key R&D Program of China (2021YFF1200901), High-level Hospital Construction Project (DFJH201801), Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515130002), and Tsinghua-Fuzhou Institute of Data Technology Project (TFIDT2021005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhao Zhong or Xuegong Zhang.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Xuegong Zhang.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained. This study was approved by the ethics committee of Guangdong Provincial Peoples’ Hospital (No. GDRHEC2018115H) and was conducted in accordance with ethical standards of the 1964 Helsinki Declaration and its later amendments.

Study subjects or cohorts overlap

This study includes some public patient cohorts available on The Cancer Imaging Archive (TCIA):

• LUNG1 (https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics)

• R01 (https://wiki.cancerimagingarchive.net/display/Public/NSCLC+Radiogenomics)

• HN1 (https://wiki.cancerimagingarchive.net/display/Public/Head-Neck-Radiomics-HN1)

• RIDER (https://wiki.cancerimagingarchive.net/display/Public/RIDER+Lung+CT).

This study also includes a patient cohort collected from Guangdong Provincial Peoples’ Hospital which was not included in other studies.

Methodology

• retrospective

• diagnostic or prognostic study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 526 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Qiu, Z., Zhang, C. et al. ITHscore: comprehensive quantification of intra-tumor heterogeneity in NSCLC by multi-scale radiomic features. Eur Radiol 33, 893–903 (2023). https://doi.org/10.1007/s00330-022-09055-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-022-09055-0

Keywords

Navigation