Skip to main content
Log in

Prospective study of Lipiodol distribution as an imaging marker for doxorubicin pharmacokinetics during conventional transarterial chemoembolization of liver malignancies

  • Vascular-Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the prognostic potential of Lipiodol distribution for the pharmacokinetic (PK) profiles of doxorubicin (DOX) and doxorubicinol (DOXOL) after conventional transarterial chemoembolization (cTACE).

Methods

This prospective clinical trial (ClinicalTrials.gov: NCT02753881) included 30 consecutive participants with liver malignancies treated with cTACE (5/2016–10/2018) using 50 mg DOX/10 mg mitomycin C emulsified 1:2 with ethiodized oil (Lipiodol). Peripheral blood was sampled at 10 timepoints for standard non-compartmental analysis of peak concentrations (Cmax) and area under the curve (AUC) with dose normalization (DN). Imaging markers included Lipiodol distribution on post-cTACE CT for patient stratification into 1 segment (n = 10), ≥ 2 segments (n = 10), and lobar cTACE (n = 10), and baseline enhancing tumor volume (ETV). Adverse events (AEs) and tumor response on MRI were recorded 3–4 weeks post-cTACE. Statistics included repeated measurement ANOVA (RM-ANOVA), Mann-Whitney, Kruskal-Wallis, Fisher’s exact test, and Pearson correlation.

Results

Hepatocellular (n = 26), cholangiocarcinoma (n = 1), and neuroendocrine metastases (n = 3) were included. Stratified according to Lipiodol distribution, DOX-Cmax increased from 1 segment (DOX-Cmax, 83.94 ± 75.09 ng/mL; DN-DOX-Cmax, 2.67 ± 2.02 ng/mL/mg) to ≥ 2 segments (DOX-Cmax, 139.66 ± 117.73 ng/mL; DN-DOX-Cmax, 3.68 ± 4.20 ng/mL/mg) to lobar distribution (DOX-Cmax, 334.35 ± 215.18 ng/mL; DN-DOX-Cmax, 7.11 ± 4.24 ng/mL/mg; p = 0.036). While differences in DN-DOX-AUC remained insignificant, RM-ANOVA revealed significant separation of time concentration curves for DOX (p = 0.023) and DOXOL (p = 0.041) comparing 1, ≥ 2 segments, and lobar cTACE. Additional indicators of higher DN-DOX-Cmax were high ETV (p = 0.047) and Child-Pugh B (p = 0.009). High ETV and tumoral Lipiodol coverage also correlated with tumor response. AE occurred less frequently after segmental cTACE.

Conclusions

This prospective clinical trial provides updated PK data revealing Lipiodol distribution as an imaging marker predictive of DOX-Cmax and tumor response after cTACE in liver cancer.

Key Points

Prospective pharmacokinetic analysis after conventional TACE revealed Lipiodol distribution (1 vs. ≥ 2 segments vs. lobar) as an imaging marker predictive of doxorubicin peak concentrations (Cmax).

Child-Pugh B class and tumor hypervascularization, measurable as enhancing tumor volume (ETV) at baseline, were identified as additional predictors for higher dose-normalized doxorubicin Cmax after conventional TACE.

ETV at baseline and tumoral Lipiodol coverage can serve as predictors of volumetric tumor response after conventional TACE according to quantitative European Association for the Study of the Liver (qEASL) criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AE:

Adverse events

AUC:

Area under the curve

CBCT:

Cone-beam CT

C max :

Peak concentration

DEB:

Drug-eluting beads

DN:

Dose normalized

DOX:

Doxorubicin

DOXOL:

Doxorubicinol

ETV:

Enhancing tumor volume

HCC:

Hepatocellular carcinoma

IAT:

Intra-arterial therapies

PK:

Pharmacokinetic

qEASL:

Quantitative European association for the study of the liver

RM-ANOVA:

Repeated measurement ANOVA

SD:

Standard deviation

TACE:

Transarterial chemoembolization

T max :

Time of peak concentration

TTV:

Total tumor volume

References

  1. Lencioni R, de Baere T, Soulen MC, Rilling WS, Geschwind JF (2016) Lipiodol transarterial chemoembolization for hepatocellular carcinoma: a systematic review of efficacy and safety data. Hepatology 64(1):106–116

    Article  CAS  Google Scholar 

  2. European Association for the Study of the Liver (2018) EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J Hepatol 69(1):182–236

    Article  Google Scholar 

  3. Marrero JA, Kulik LM, Sirlin CB et al (2018) Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 68(2):723–750

    Article  Google Scholar 

  4. Kiefer MV, Albert M, McNally M et al (2011) Chemoembolization of intrahepatic cholangiocarcinoma with cisplatinum, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol: a 2-center study. Cancer 117(7):1498–1505

    Article  CAS  Google Scholar 

  5. Albert M, Kiefer MV, Sun W et al (2011) Chemoembolization of colorectal liver metastases with cisplatin, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol. Cancer 117(2):343–352

    Article  CAS  Google Scholar 

  6. de Baere T, Arai Y, Lencioni R et al (2016) Treatment of liver tumors with Lipiodol TACE: technical recommendations from experts opinion. Cardiovasc Intervent Radiol 39(3):334–343

    Article  Google Scholar 

  7. Das A, Gabr A, O'Brian DP et al (2019) Contemporary systematic review of health-related quality of life outcomes in locoregional therapies for hepatocellular carcinoma. J Vasc Interv Radiol 30(12):1924–33.e2

    Article  Google Scholar 

  8. Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma. Lancet 391(10127):1301–1314

    Article  Google Scholar 

  9. Kanematsu T, Furuta T, Takenaka K et al (1989) A 5-year experience of lipiodolization: selective regional chemotherapy for 200 patients with hepatocellular carcinoma. Hepatology 10(1):98–102

    Article  CAS  Google Scholar 

  10. Park C, Choi SI, Kim H, Yoo HS, Lee YB (1990) Distribution of Lipiodol in hepatocellular carcinoma. Liver 10(2):72–78

    Article  CAS  Google Scholar 

  11. de Baere T, Dufaux J, Roche A et al (1995) Circulatory alterations induced by intra-arterial injection of iodized oil and emulsions of iodized oil and doxorubicin: experimental study. Radiology 194(1):165–170

    Article  CAS  Google Scholar 

  12. Idee JM, Guiu B (2013) Use of Lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: a review. Crit Rev Oncol Hematol 88(3):530–549

    Article  Google Scholar 

  13. Raoul JL, Heresbach D, Bretagne JF et al (1992) Chemoembolization of hepatocellular carcinomas. A study of the biodistribution and pharmacokinetics of doxorubicin. Cancer 70(3):585–590

    Article  CAS  Google Scholar 

  14. Varela M, Real MI, Burrel M et al (2007) Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol 46(3):474–481

    Article  CAS  Google Scholar 

  15. Lammer J, Malagari K, Vogl T et al (2010) Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol 33(1):41–52

    Article  Google Scholar 

  16. Golfieri R, Giampalma E, Renzulli M et al (2014) Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma. Br J Cancer 111(2):255–264

    Article  CAS  Google Scholar 

  17. Georgiades CS, Hong K, D’Angelo M, Geschwind JF (2005) Safety and efficacy of transarterial chemoembolization in patients with unresectable hepatocellular carcinoma and portal vein thrombosis. J Vasc Interv Radiol 16(12):1653–1659

    Article  Google Scholar 

  18. Geschwind JF, Ramsey DE, Cleffken B et al (2003) Transcatheter arterial chemoembolization of liver tumors: effects of embolization protocol on injectable volume of chemotherapy and subsequent arterial patency. Cardiovasc Intervent Radiol 26(2):111–117

    Article  Google Scholar 

  19. Favelier S, Germain T, Genson PY et al (2015) Anatomy of liver arteries for interventional radiology. Diagn Interv Imaging 96(6):537–546

    Article  CAS  Google Scholar 

  20. Chapiro J, Wood LD, Lin M et al (2014) Radiologic-pathologic analysis of contrast-enhanced and diffusion-weighted MR imaging in patients with HCC after TACE: diagnostic accuracy of 3D quantitative image analysis. Radiology 273:746–758. https://doi.org/10.1148/radiol.14140033

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chapiro J, Duran R, Lin M et al (2014) Identifying staging markers for hepatocellular carcinoma before transarterial chemoembolization: comparison of three-dimensional quantitative versus non-three-dimensional imaging markers. Radiology 275:438–447. https://doi.org/10.1148/radiol.14141180

    Article  PubMed  PubMed Central  Google Scholar 

  22. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216

    Article  CAS  Google Scholar 

  23. Lencioni R, Llovet JM (2010) Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 30(1):52–60

    Article  CAS  Google Scholar 

  24. Avants BBT, Nicholas J, Johnson HJ. Advanced normalization tools. http://stnava.github.io/ANTs. Accessed 2019

  25. Wang X, Yarmohammadi H, Cao G et al (2017) Dual phase cone-beam computed tomography in detecting <3 cm hepatocellular carcinomas during transarterial chemoembolization. J Cancer Res Ther 13(1):38–43

    Article  CAS  Google Scholar 

  26. Wang Z, Chen R, Duran R et al (2015) Intraprocedural 3D quantification of lipiodol deposition on cone-beam CT predicts tumor response after transarterial chemoembolization in patients with hepatocellular carcinoma. Cardiovasc Intervent Radiol 38(6):1548–1556

    Article  CAS  Google Scholar 

  27. Hu J, Maybody M, Cao G et al (2016) Lipiodol retention pattern assessed by cone beam computed tomography during conventional transarterial chemoembolization of hepatocellular carcinoma: accuracy and correlation with response. Cancer Imaging 16(1):32

    Article  Google Scholar 

  28. Matsui O, Kadoya M, Yoshikawa J, Gabata T, Takashima T, Demachi H (1994) Subsegmental transcatheter arterial embolization for small hepatocellular carcinomas: local therapeutic effect and 5-year survival rate. Cancer Chemother Pharmacol 33(Suppl):S84–S88

    Article  Google Scholar 

  29. Schaupp CM, White CC, Merrill GF, Kavanagh TJ (2015) Metabolism of doxorubicin to the cardiotoxic metabolite doxorubicinol is increased in a mouse model of chronic glutathione deficiency: a potential role for carbonyl reductase 3. Chem Biol Interact 234:154–161

    Article  CAS  Google Scholar 

  30. Cusack BJ, Young SP, Driskell J, Olson RD (1993) Doxorubicin and doxorubicinol pharmacokinetics and tissue concentrations following bolus injection and continuous infusion of doxorubicin in the rabbit. Cancer Chemother Pharmacol 32(1):53–58

    Article  CAS  Google Scholar 

  31. Del Tacca M, Danesi R, Ducci M, Bernardini C, Romanini A (1985) Might adriamycinol contribute to adriamycin-induced cardiotoxicity? Pharmacol Res Commun 17(11):1073–1084

    Article  Google Scholar 

  32. Boucek RJ, Olson RD, Brenner DE, Ogunbunmi EM, Inui M, Fleischer S (1987) The major metabolite of doxorubicin is a potent inhibitor of membrane-associated ion pumps. A correlative study of cardiac muscle with isolated membrane fractions. J Biol Chem 262(33):15851–15856

    Article  CAS  Google Scholar 

  33. Chebib I, Shabani-Rad MT, Chow MS, Zhang J, Gao ZH (2007) Microvessel density and clinicopathologic characteristics in hepatocellular carcinoma with and without cirrhosis. Biomark Insights 2:59–68

    Article  Google Scholar 

  34. Wang Q, Koniaris LG, Milgrom DP et al (2019) CT and MRI imaging and interpretation of hepatic arterioportal shunts. Transl Gastroenterol Hepatol 4:34

    Article  Google Scholar 

  35. Chen CS, Li FK, Guo CY et al (2016) Tumor vascularity and lipiodol deposition as early radiological markers for predicting risk of disease progression in patients with unresectable hepatocellular carcinoma after transarterial chemoembolization. Oncotarget 7(6):7241–7252

    Article  Google Scholar 

  36. Najmi Varzaneh F, Pandey A, Aliyari Ghasabeh M et al (2018) Prediction of post-TACE necrosis of hepatocellular carcinoma usingvolumetric enhancement on MRI and volumetric oil deposition on CT, with pathological correlation. Eur Radiol 28(7):3032–3040

    Article  Google Scholar 

  37. Yang Z, Zou R, Zheng Y et al (2019) Lipiodol deposition in portal vein tumour thrombus predicts treatment outcome in HCC patients after transarterial chemoembolisation. Eur Radiol 29(11):5752–5762

    Article  Google Scholar 

  38. van Breugel JMM, Geschwind JF, Mirpour S et al (2019) Theranostic application of lipiodol for transarterial chemoembolization in a VX2 rabbit liver tumor model. Theranostics 9(13):3674–3686

    Article  Google Scholar 

  39. Miszczuk MA, Chapiro J, Geschwind JH et al (2019) Lipiodol as an imaging biomarker of tumor response after conventional transarterial chemoembolization: prospective clinical validation in patients with primary and secondary liver cancer. Transl Oncol 13(3):100742

    Article  Google Scholar 

  40. Malagari K, Pomoni M, Moschouris H et al (2014) Chemoembolization of hepatocellular carcinoma with HepaSphere 30-60 mum. Safety and efficacy study. Cardiovasc Intervent Radiol 37(1):165–175

    Article  Google Scholar 

  41. van Malenstein H, Maleux G, Vandecaveye V et al (2011) A randomized phase II study of drug-eluting beads versus transarterial chemoembolization for unresectable hepatocellular carcinoma. Onkologie 34(7):368–376

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Guerbet for funding this study. L.J.S. is aparticipant in the BIH-Charité Junior Clinician Scientist Program funded by theCharité–Universiätsmedizin Berlin and the Berlin Institute of Health and reports grants from Leopoldina Postdoctoral Fellowship outside the submitted work. J.C. reports grants from the German-Israeli Foundation for Scientific Research and Development, Boston Scientific, and Philips Healthcare. L.J.S., J.C., E.F., and T.S. report grants from the National Institutes of Health (R01 CA206180). L.J.S., J.C., and S.S. report grants from the Rolf W. Günther Foundation for Radiological Research and L.J.S. and J.C. from the Society of Interventional Oncology (SIO) (19-001324) outside the submitted work. I.T.S. reports grants from the Biomedical Education Program (BMEP) outside the submitted work. The authors declare no potential conflict of interest.

Funding

This study has received funding by Guerbet. The authors maintained control over the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Schlachter.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Todd Schlachter, MD.

Conflict of interest

The authors of this manuscript declare relationships with Guerbet related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Yanhong Deng kindly provided statistical advice for this manuscript.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• prospective

• diagnostic and prognostic

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savic, L.J., Chapiro, J., Funai, E. et al. Prospective study of Lipiodol distribution as an imaging marker for doxorubicin pharmacokinetics during conventional transarterial chemoembolization of liver malignancies. Eur Radiol 31, 3002–3014 (2021). https://doi.org/10.1007/s00330-020-07380-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-020-07380-w

Keywords

Navigation